
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2588814/publications.pdf Version: 2024-02-01

RANG-LING LL

#	Article	IF	CITATIONS
1	Green Synthesis of Indeno[1,2-b]quinoxalines Using β-Cyclodextrin as Catalyst. Molecules, 2022, 27, 580.	3.8	2
2	Hierarchically and wood-like cyclodextrin aerogels with enhanced thermal insulation and wide spectrum acoustic absorption. Chemical Engineering Journal, 2022, 446, 137280.	12.7	7
3	MOF-layer composite polyurethane membrane increasing both selectivity and permeability: Pushing commercial rubbery polymer membranes to be attractive for CO2 separation. Separation and Purification Technology, 2022, 297, 121452.	7.9	10
4	Bioinspired Ultra Tear-Resistant Elastomer with a Slidable Double-Network Structure. ACS Applied Materials & Interfaces, 2022, 14, 31424-31434.	8.0	2
5	Tough double-network elastomers with slip-rings. Polymer Chemistry, 2021, 12, 3142-3152.	3.9	6
6	Ultrahigh Carbon Dioxide-Selective Composite Membrane Containing a Î ³ -CD-MOF Layer. ACS Applied Materials & Interfaces, 2021, 13, 13034-13043.	8.0	24
7	Hierarchical porous carbon derived from green cyclodextrin <scp>metalâ€organic</scp> framework and its application in microwave absorption. Journal of Applied Polymer Science, 2021, 138, 50849.	2.6	12
8	Cyclodextrin self-assembled graphene oxide aerogel microspheres as broad-spectrum adsorbent for removing dyes and organic micropollutants from water. Journal of Environmental Chemical Engineering, 2021, 9, 104749.	6.7	25
9	β-Cyclodextrin-Modified Polyacrylonitrile Nanofibrous Scaffolds with Breathability, Moisture-Wicking, and Antistatic Performance. Industrial & Engineering Chemistry Research, 2021, 60, 10217-10224.	3.7	3
10	A Tough Self-Healing Elastomer with a Slip-Ring Structure. Industrial & Engineering Chemistry Research, 2021, 60, 251-262.	3.7	2
11	Recent Advances of Porous Materials Based on Cyclodextrin. Macromolecular Rapid Communications, 2021, 42, e2100497.	3.9	19
12	Amino-Functionalized β-Cyclodextrin to Construct Green Metal–Organic Framework Materials for CO ₂ Capture. ACS Applied Materials & Interfaces, 2020, 12, 3032-3041.	8.0	72
13	Facile Fabrication of an AIE-Active Metal–Organic Framework for Sensitive Detection of Explosives in Liquid and Solid Phases. ACS Applied Materials & Interfaces, 2020, 12, 55299-55307.	8.0	51
14	Poly (vinyl alcohol)/β-Cyclodextrin Composite Fiber with Good Flame Retardant and Super-Smoke Suppression Properties. Polymers, 2020, 12, 1078.	4.5	13
15	Cross-stacking aligned non-woven fabrics with automatic self-healing properties for electromagnetic interference shielding. Carbon, 2020, 162, 445-454.	10.3	47
16	Green flame-retardant flexible polyurethane foam based on cyclodextrin. Polymer Degradation and Stability, 2020, 178, 109171.	5.8	52
17	Cyclodextrins-Based Shape Memory Polymers and Self-Healing Polymers. , 2020, , 587-600.		0
18	Functional materials with self-healing properties: a review. Soft Matter, 2019, 15, 6615-6625.	2.7	43

#	Article	IF	CITATIONS
19	Facile stabilization of a cyclodextrin metal–organic framework under humid environment <i>via</i> hydrogen sulfide treatment. RSC Advances, 2019, 9, 18271-18276.	3.6	34
20	Tough Self-Healing Elastomers Based on the Host–Guest Interaction of Polycyclodextrin. ACS Applied Materials & Interfaces, 2019, 11, 12105-12113.	8.0	66
21	β-Cyclodextrin based air filter for high-efficiency filtration of pollution sources. Journal of Hazardous Materials, 2019, 373, 197-203.	12.4	43
22	Multiresponsive Reversible Deformation of Patterned Polyacrylamide Hydrogel Constructed by a Computer-Assisted Dispenser. ACS Applied Polymer Materials, 2019, 1, 1187-1194.	4.4	5
23	Cyclodextrins-Based Shape Memory Polymers and Self-Healing Polymers. , 2019, , 1-15.		0
24	Super Tough, Ultrastretchable Hydrogel with Multistimuli Responsiveness. ACS Applied Materials & Interfaces, 2018, 10, 15021-15029.	8.0	54
25	Effective Formaldehyde Capture by Green Cyclodextrin-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2018, 10, 42-46.	8.0	107
26	Leeches-Inspired Hydrogel–Elastomer Integration Materials. ACS Applied Materials & Interfaces, 2018, 10, 40238-40245.	8.0	22
27	Reusable Xerogel Containing Quantum Dots with High Fluorescence Retention. Polymers, 2018, 10, 310.	4.5	9
28	Reactive Oxygen Species and Glutathione Dual Redox-Responsive Supramolecular Assemblies with Controllable Release Capability. ACS Applied Materials & Interfaces, 2017, 9, 4475-4484.	8.0	86
29	Semiâ€ŀPNs with Moistureâ€Triggered Shape Memory and Selfâ€Healing Properties. Macromolecular Rapid Communications, 2017, 38, 1700149.	3.9	38
30	Shape Memory Polymers Based on Supramolecular Interactions. ACS Applied Materials & Interfaces, 2017, 9, 20276-20293.	8.0	120
31	The Deeply Understanding of the Selfâ€Healing Mechanism for Selfâ€Healing Behavior of Supramolecular Materials Based on Cyclodextrin–Guest Interactions. Macromolecular Chemistry and Physics, 2017, 218, 1600593.	2.2	12
32	Electromagnetic Wave Absorption Coating Material with Selfâ€Healing Properties. Macromolecular Rapid Communications, 2017, 38, 1700447.	3.9	29
33	UVâ€Blocking Coating with Selfâ€Healing Capacity. Macromolecular Chemistry and Physics, 2017, 218, 1700213.	2.2	14
34	pH and glutathione dual-triggered supramolecular assemblies as synergistic and controlled drug release carriers. Polymer Chemistry, 2017, 8, 7260-7270.	3.9	18
35	A Tri-Stimuli-Responsive Shape-Memory Material Using Host-Guest Interactions as Molecular Switches. Macromolecular Rapid Communications, 2016, 37, 433-438.	3.9	37
36	A three-dimensional graphene oxide supramolecular hydrogel for infrared light-responsive cascade release of two anticancer drugs. Chemical Communications, 2016, 52, 14384-14387.	4.1	32

#	Article	IF	CITATIONS
37	pH- and Thermal-Responsive Multishape Memory Hydrogel. ACS Applied Materials & Interfaces, 2016, 8, 27432-27437.	8.0	53
38	6â€TIPSâ€Î²â€Cyclodextrinâ€Modified Fe ₃ O ₄ for Facile Enantioseparation of 1â€(1â€Naphthyl)ethylamine. Chemistry - an Asian Journal, 2016, 11, 3513-3519.	3.3	1
39	Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect. Chemical Communications, 2016, 52, 10609-10612.	4.1	129
40	Conductive Elastomers with Autonomic Selfâ€Healing Properties. Angewandte Chemie - International Edition, 2015, 54, 12127-12133.	13.8	145
41	pH-responsive dendritic polyrotaxane drug-polymer conjugates forming nanoparticles as efficient drug delivery system for cancer therapy. Polymer Chemistry, 2015, 6, 2098-2107.	3.9	36
42	An efficient multiple healing conductive composite via host–guest inclusion. Chemical Communications, 2015, 51, 6377-6380.	4.1	45
43	Multi-stimuli-responsive magnetic assemblies as tunable releasing carriers. Journal of Materials Chemistry B, 2015, 3, 6026-6031.	5.8	26
44	Dual-Stimuli-Responsive Nanoassemblies as Tunable Releasing Carriers. ACS Macro Letters, 2015, 4, 543-547.	4.8	52
45	Development and characterization of a nanodendritic silver-based solid-phase extraction sorbent for selective enrichment of endocrine-disrupting chemicals in water and milk samples. Analytica Chimica Acta, 2015, 900, 76-82.	5.4	11
46	Evaluation of Rod‧haped Nanoparticles as Carriers for Gene Delivery. Particle and Particle Systems Characterization, 2014, 31, 994-1000.	2.3	6
47	Preparation of thermosensitive polymer magnetic particles and their application in protein separations. Journal of Colloid and Interface Science, 2014, 435, 99-104.	9.4	10
48	Nanoassemblies driven by cyclodextrin-based inclusion complexation. Chemical Communications, 2014, 50, 11083-11092.	4.1	73
49	Layer-by-layer self-assembled films for building magnetically driven walking devices. Journal of Materials Chemistry C, 2014, 2, 6723-6726.	5.5	3
50	A reversible functional supramolecular material formed by host–guest inclusion. Polymer Chemistry, 2014, 5, 2922-2927.	3.9	33
51	pH-responsive polymer–drug conjugates as multifunctional micelles for cancer-drug delivery. Nanotechnology, 2014, 25, 335101.	2.6	28
52	Cyclodextrin-Based Microcapsules as Bioreactors for ATP Biosynthesis. Biomacromolecules, 2013, 14, 2984-2988.	5.4	29
53	Synthesis of biocompatible hybrid magnetic hollow spheres based on encapsulation strategy. Carbohydrate Polymers, 2013, 92, 523-528.	10.2	8
54	Photoreversible Polymer–Surfactant Micelles Using the Molecular Recognition of α-Cyclodextrin. Langmuir, 2013, 29, 3188-3194.	3.5	10

#	Article	IF	CITATIONS
55	Redox―and Glucoseâ€Induced Shapeâ€Memory Polymers. Macromolecular Rapid Communications, 2013, 34, 867-872.	3.9	68
56	Vesicular gold assemblies based on host–guest inclusion and its controllable release of doxorubicin. Nanotechnology, 2013, 24, 495103.	2.6	17
57	pHâ€&witchable Macroscopic Assembly through Host–Guest Inclusion. Macromolecular Rapid Communications, 2013, 34, 1174-1180.	3.9	11
58	Stimuli-induced gel–sol transition of multi-sensitive supramolecular β-cyclodextrin grafted alginate/ferrocene modified pluronic hydrogel. Soft Matter, 2012, 8, 5746.	2.7	86
59	pHâ€Induced Shapeâ€Memory Polymers. Macromolecular Rapid Communications, 2012, 33, 1055-1060.	3.9	250
60	Encapsulation studies and selective membrane permeability properties of self-assembly hollow nanospheres. Soft Matter, 2011, 7, 1018-1024.	2.7	17
61	Hollow Nanospheres Based on the Self-Assembly of Alginate- <i>graft</i> -poly(ethylene glycol) and α-Cyclodextrin. Langmuir, 2011, 27, 14401-14407.	3.5	36
62	Supramolecular assembly of cyclodextrin-based nanospheres for gene delivery. Journal of Controlled Release, 2011, 152, e141-e142.	9.9	5
63	Self-assembly of chitosan- g -PEG and $\hat{l}\pm$ -cyclodextrin into hollow spheres in aqueous solution. Journal of Controlled Release, 2011, 152, e204-e205.	9.9	1
64	Selfâ€Assembly Pluronic and βâ€Cyclodextrin to Hollow Nanospheres for Enhanced Gene Delivery. Macromolecular Rapid Communications, 2011, 32, 1533-1538.	3.9	20
65	Selfâ€Assembly of Rod–Coil Polyethylenimine–Poly(ethylene glycol)–αâ€Cyclodextrin Inclusion Complexes into Hollow Spheres and Rodâ€Like Particles. Macromolecular Rapid Communications, 2011, 32, 1965-1971.	3.9	18
66	Macromol. Rapid Commun. 24/2011. Macromolecular Rapid Communications, 2011, 32, 1938-1938.	3.9	0
67	MyMolDB: A micromolecular database solution with open source and free components. Journal of Computational Chemistry, 2011, 32, 2942-2948.	3.3	1
68	Self-assembly of carboxymethyl konjac glucomannan-g-poly(ethylene glycol) and (α-cyclodextrin) to biocompatible hollow nanospheres for glucose oxidase encapsulation. Carbohydrate Polymers, 2011, 86, 120-126.	10.2	35
69	Self-aggregates of cholesterol-modified carboxymethyl konjac glucomannan conjugate: Preparation, characterization, and preliminary assessment as a carrier of etoposide. Carbohydrate Polymers, 2011, 86, 513-519.	10.2	34
70	Preparation and characterization of a poly(ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer. Carbohydrate Polymers, 2010, 79, 648-654.	10.2	29
71	Self-assembly of \hat{l}^2 -cyclodextrin and pluronic into hollow nanospheres in aqueous solution. Journal of Colloid and Interface Science, 2010, 350, 447-452.	9.4	30
72	Effects of solvent, casting temperature, and guest/host stoichiometries on the properties of shape memory material based on partial α Dâ€₽EG inclusion complex. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 951-957.	2.1	17

#	Article	IF	CITATIONS
73	Degradable hollow spheres based on self-assembly inclusion. Chemical Communications, 2010, 46, 643-645.	4.1	27
74	Enzymatic Degradation of Supramolecular Materials Based on Partial Inclusion Complex Formation between α-Cyclodextrin and Poly(Îμ-caprolactone). Journal of Physical Chemistry B, 2010, 114, 4739-4745.	2.6	11
75	Self-assembly hollow nanosphere for enzyme encapsulation. Soft Matter, 2010, 6, 1405.	2.7	47

Supramolecular Network Based on the Selfâ€Assembly of <i>γ</i>â€Cyclodextrin with Poly(ethylene) Tj ETQq0 0 0.rgBT /Overlock 10 Tr

77	Semi-permeable nanocapsules of konjac glucomannan–chitosan for enzyme immobilization. International Journal of Pharmaceutics, 2008, 364, 102-107.	5.2	50
78	Minor Iridoids from the Roots of <i>Valeriana wallichii</i> . Journal of Natural Products, 2008, 71, 1254-1257.	3.0	39
79	Organocatalytic and Highly Stereoselective Direct Vinylogous Mannich Reaction. Journal of the American Chemical Society, 2007, 129, 1878-1879.	13.7	175
80	Organocatalytic asymmetric Friedel–Crafts alkylation/cascade reactions of naphthols and nitroolefins. Chemical Communications, 2007, , 2228-2230.	4.1	129
81	Enantioselective Michael Addition of α-Substituted Cyanoacetates to Vinyl Ketones Catalyzed by Bifunctional Organocatalysts. Chemistry - A European Journal, 2007, 13, 319-327.	3.3	77
82	Enantioselective construction of quaternary carbon centre catalysed by bifunctional organocatalyst. Organic and Biomolecular Chemistry, 2006, 4, 2097.	2.8	144
83	Unexpected Ring-Opening Reactions of Aziridines with Aldehydes Catalyzed by Nucleophilic Carbenes under Aerobic Conditions. Organic Letters, 2006, 8, 1521-1524.	4.6	91
84	The Design and Synthesis of Bis(thiourea) Ligands and Their Application in Pd-Catalyzed Heck and Suzuki Reactions Under Aerobic Conditions. European Journal of Organic Chemistry, 2006, 2006, 1177-1184.	2.4	58
85	Asymmetric Michael Addition of Arylthiols to α,β-Unsaturated Carbonyl Compounds Catalyzed by Bifunctional Organocatalysts. Synlett, 2005, 2005, 603-606.	1.8	36
86	N-Benzylidene-3-(diphenylphosphino)-1-propanamine. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, o858-o859.	0.2	0