Eduardo Fernandez-Megia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2588726/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dendrimers as Color-Stabilizers of Pyranoanthocyanins: The Dye Concentration Governs the Host–Guest Interaction Mechanisms. ACS Applied Polymer Materials, 2021, 3, 1457-1464.	2.0	6
2	Liver X Receptor Activation with an Intranasal Polymer Therapeutic Prevents Cognitive Decline without Altering Lipid Levels. ACS Nano, 2021, 15, 4678-4687.	7.3	17
3	Supramolecular dendrimer-containing layer-by-layer nanoassemblies for bioapplications: current status and future prospects. Polymer Chemistry, 2021, 12, 5902-5930.	1.9	9
4	Unveiling an NMR-Invisible Fraction of Polymers in Solution by Saturation Transfer Difference. ACS Macro Letters, 2021, 10, 1474-1479.	2.3	1
5	Functional Gallic Acid-Based Dendrimers as Synthetic Nanotools to Remodel Amyloid-β-42 into Noncytotoxic Forms. ACS Applied Materials & Interfaces, 2021, 13, 59673-59682.	4.0	9
6	Polysaccharides meet dendrimers to fine-tune the stability and release properties of polyion complex micelles. Polymer Chemistry, 2019, 10, 4709-4717.	1.9	16
7	Impact of a Waterâ€Soluble Gallic Acidâ€Based Dendrimer on the Colorâ€Stabilizing Mechanisms of Anthocyanins. Chemistry - A European Journal, 2019, 25, 11696-11706.	1.7	16
8	Multivalent Affidendrons with High Affinity and Specificity toward <i>Staphylococcus aureus</i> as Versatile Tools for Modulating Multicellular Behaviors. ACS Applied Materials & Interfaces, 2019, 11, 21391-21398.	4.0	11
9	Dendrimers as Competitors of Protein–Protein Interactions of the Intrinsically Disordered Nuclear Chromatin Protein NUPR1. Biomacromolecules, 2019, 20, 2567-2576.	2.6	11
10	Tuning the Size of Nanoassembles: A Hierarchical Transfer of Information from Dendrimers to Polyion Complexes. Angewandte Chemie, 2018, 130, 5371-5375.	1.6	1
11	Tuning the Size of Nanoassembles: A Hierarchical Transfer of Information from Dendrimers to Polyion Complexes. Angewandte Chemie - International Edition, 2018, 57, 5273-5277.	7.2	28
12	Fast NMR Screening of Macromolecular Complexes by a Paramagnetic Spin Relaxation Filter. ACS Omega, 2018, 3, 2974-2983.	1.6	6
13	Preparation and Characterization of Biocompatible Chitosan Nanoparticles for Targeted Brain Delivery of Peptides. Methods in Molecular Biology, 2018, 1727, 443-454.	0.4	17
14	Filtering the NMR Spectra of Complex Mixtures through Polymerâ€Mediated Paramagnetic Spin Relaxation. Chemistry - A European Journal, 2018, 24, 19236-19242.	1.7	4
15	Biodegradable PEG–dendritic block copolymers: synthesis and biofunctionality assessment as vectors of siRNA. Journal of Materials Chemistry B, 2017, 5, 4901-4917.	2.9	15
16	A dendrimer–hydrophobic interaction synergy improves the stability of polyion complex micelles. Polymer Chemistry, 2017, 8, 2528-2537.	1.9	23
17	The Effect of PEGylation on Multivalent Binding: A Surface Plasmon Resonance and Isothermal Titration Calorimetry Study with Structurally Diverse PEGâ€Đendritic GATG Copolymers. ChemNanoMat, 2016, 2, 437-446.	1.5	10
18	Dendrimer mediated clustering of bacteria: improved aggregation and evaluation of bacterial response and viability. Biomaterials Science, 2016, 4, 998-1006.	2.6	17

#	Article	IF	CITATIONS
19	Dendrimers as Innovative Radiopharmaceuticals in Cancer Radionanotherapy. Biomacromolecules, 2016, 17, 3103-3114.	2.6	40
20	Systemically Administered Brain-Targeted Nanoparticles Transport Peptides across the Blood—Brain Barrier and Provide Neuroprotection. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 469-475.	2.4	97
21	In situ nanofabrication of hybrid PEG-dendritic–inorganic nanoparticles and preliminary evaluation of their biocompatibility. Nanoscale, 2015, 7, 3933-3940.	2.8	11
22	Predicting PSR Filters by Transverse Relaxation Enhancements. Analytical Chemistry, 2015, 87, 760-767.	3.2	8
23	GATG Dendrimers and PEGylated Block Copolymers: from Synthesis to Bioapplications. AAPS Journal, 2014, 16, 948-961.	2.2	22
24	Stepwise Filtering of the Internal Layers of Dendrimers by Transverse-Relaxation-Edited NMR. Journal of the American Chemical Society, 2013, 135, 11513-11516.	6.6	30
25	Disclosing an NMR-Invisible Fraction in Chitosan and PEGylated Copolymers and Its Role on the Determination of Degrees of Substitution. Molecular Pharmaceutics, 2013, 10, 3225-3231.	2.3	21
26	Real-Time Evaluation of Binding Mechanisms in Multivalent Interactions: A Surface Plasmon Resonance Kinetic Approach. Journal of the American Chemical Society, 2013, 135, 5966-5969.	6.6	86
27	The Dynamics of Dendrimers by NMR Relaxation: Interpretation Pitfalls. Journal of the American Chemical Society, 2013, 135, 1972-1977.	6.6	49
28	Anti-tumor efficacy of chitosan-g-poly(ethylene glycol) nanocapsules containing docetaxel: Anti-TMEFF-2 functionalized nanocapsules vs. non-functionalized nanocapsules. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 330-337.	2.0	42
29	Chitosan hydrophobic domains are favoured at low degree of acetylation and molecular weight. Polymer, 2013, 54, 2081-2087.	1.8	26
30	A new potential nano-oncological therapy based on polyamino acid nanocapsules. Journal of Controlled Release, 2013, 169, 10-16.	4.8	34
31	Anionic Dendritic Polymers for Biomedical Applications. , 2013, , 56-72.		4
32	Dendrimers reduce toxicity of Aβ 1-28 peptide during aggregation and accelerate fibril formation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1372-1378.	1.7	49
33	Exploring the efficiency of gallic acid-based dendrimers and their block copolymers with PEG as gene carriers. Nanomedicine, 2012, 7, 1667-1681.	1.7	22
34	Polypeptides and polyaminoacids in drug delivery. Expert Opinion on Drug Delivery, 2012, 9, 183-201.	2.4	61
35	PEG-dendritic block copolymers for biomedical applications. New Journal of Chemistry, 2012, 36, 205-210.	1.4	51
36	Peripheral Functionalization of Dendrimers Regulates Internalization and Intracellular Trafficking in Living Cells. Bioconjugate Chemistry, 2012, 23, 1059-1068.	1.8	39

#	Article	IF	CITATIONS
37	Click Chemistry with Polymers, Dendrimers, and Hydrogels for Drug Delivery. Pharmaceutical Research, 2012, 29, 902-921.	1.7	109
38	Click Chemistry for Drug Delivery Nanosystems. Pharmaceutical Research, 2012, 29, 1-34.	1.7	164
39	Dendritic MRI Contrast Agents: An Efficient Prelabeling Approach Based on CuAAC. Biomacromolecules, 2011, 12, 2902-2907.	2.6	37
40	Efficient Multigram Synthesis of the Repeating Unit of Gallic Acid-Triethylene Glycol Dendrimers. Organic Letters, 2011, 13, 4522-4525.	2.4	24
41	NMR methods for unravelling the spectra of complex mixtures. Natural Product Reports, 2011, 28, 78-98.	5.2	111
42	Reliable and Efficient Procedures for the Conjugation of Biomolecules through Huisgen Azide–Alkyne Cycloadditions. Angewandte Chemie - International Edition, 2011, 50, 8794-8804.	7.2	287
43	Hyaluronic Acid/Chitosan-g-Poly(ethylene glycol) Nanoparticles for Gene Therapy: An Application for pDNA and siRNA Delivery. Pharmaceutical Research, 2010, 27, 2544-2555.	1.7	83
44	Evaluation of Amino Acids as Chiral Ligands for the Enantiodifferentiation of Carbohydrates by TOCSY NMR. Journal of Organic Chemistry, 2010, 75, 3878-3881.	1.7	13
45	Coreâ^'Shell Dendriplexes with Sterically Induced Stoichiometry for Gene Delivery. Macromolecules, 2010, 43, 6953-6961.	2.2	25
46	Dendrimers as Potential Inhibitors of the Dimerization of the Capsid Protein of HIV-1. Biomacromolecules, 2010, 11, 2069-2078.	2.6	41
47	Dynamics of Chitosan by ¹ H NMR Relaxation. Biomacromolecules, 2010, 11, 2079-2086.	2.6	36
48	The dynamics of GATG glycodendrimers by NMR diffusion and quantitative 13C relaxation. Physical Chemistry Chemical Physics, 2010, 12, 6587.	1.3	25
49	A Nanomedicine Transports a Peptide Caspase-3 Inhibitor across the Blood–Brain Barrier and Provides Neuroprotection. Journal of Neuroscience, 2009, 29, 13761-13769.	1.7	169
50	Surpassing the Use of Copper in the Click Functionalization of Polymeric Nanostructures: A Strain-Promoted Approach. Journal of the American Chemical Society, 2009, 131, 5748-5750.	6.6	144
51	Probing the Relevance of Lectin Clustering for the Reliable Evaluation of Multivalent Carbohydrate Recognition. Journal of the American Chemical Society, 2009, 131, 17765-17767.	6.6	87
52	Ionically Crosslinked Chitosan Nanoparticles as Gene Delivery Systems: Effect of PEGylation Degree on <l>ln Vitro</l> and <l>ln Vivo</l> Gene Transfer. Journal of Biomedical Nanotechnology, 2009, 5, 162-171.	0.5	58
53	Synthesis and supramolecular assembly of clicked anionic dendritic polymers into polyion complex micelles. Chemical Communications, 2008, , 3136.	2.2	43
54	Conjugation of Bioactive Ligands to PEG-Grafted Chitosan at the Distal End of PEG. Biomacromolecules, 2007, 8, 833-842.	2.6	59

#	Article	IF	CITATIONS
55	Paramagnetic NMR Relaxation in Polymeric Matrixes:  Sensitivity Enhancement and Selective Suppression of Embedded Species (¹ H and ¹³ C PSR Filter). Journal of the American Chemical Society, 2007, 129, 15164-15173.	6.6	14
56	"Clickable―PEGâ^'Dendritic Block Copolymers. Biomacromolecules, 2006, 7, 3104-3111.	2.6	107
57	A Click Approach to Unprotected Glycodendrimersâ€. Macromolecules, 2006, 39, 2113-2120.	2.2	209
58	Chitosan–PEG nanocapsules as new carriers for oral peptide delivery. Journal of Controlled Release, 2006, 111, 299-308.	4.8	289
59	Optimal routine conditions for the determination of the degree of acetylation of chitosan by 1H-NMR. Carbohydrate Polymers, 2005, 61, 155-161.	5.1	119
60	Development and Brain Delivery of Chitosanâ^'PEG Nanoparticles Functionalized with the Monoclonal Antibody OX26. Bioconjugate Chemistry, 2005, 16, 1503-1511.	1.8	279
61	A Short, Efficient, and Stereoselective Procedure for the Synthesis ofcis-3-Hydroxymethyl-aziridine-2-carboxylic Acid Derivatives, Important Intermediates in the Synthesis of Mitomycinoids. Journal of Organic Chemistry, 2000, 65, 6780-6783.	1.7	16
62	Zirconocene Hydrochloride "Schwartz Reagent". Synlett, 1999, 1999, 1179-1179.	1.0	7
63	Total synthesis of the cholesterol biosynthesis inhibitor 1233A via a (Ï€-allyl)tricarbonyliron lactone complex. Journal of the Chemical Society Perkin Transactions 1, 1999, , 1917-1926.	0.9	18
64	Studies Towards the Synthesis of the C29-C51 Fragment of Altohyrtin A. Synlett, 1998, 1998, 991-994.	1.0	48
65	Enantiomerically Pure Highly Functionalized α-Amino Ketones from the Reaction of Chiral Cyclic N-(9-Phenylfluoren-9-yl) α-Amido Esters with Organolithium Reagents. Journal of Organic Chemistry, 1997, 62, 4770-4779.	1.7	16
66	Enantiospecific synthesis of γ-keto-α,β-diamino acid derivatives. Stereoselective synthesis of a precursor of streptolidine lactam. Tetrahedron Letters, 1997, 38, 673-676.	0.7	16
67	On the Stereoselectivity of the Reaction of N-(9-Phenylfluoren-9-yl)aspartate Enolates with Electrophiles. Synthesis of Enantiomerically Pure 3-Hydroxy-, 3-Amino-, and 3-Hydroxy-3-methylaspartates. Journal of Organic Chemistry, 1994, 59, 7643-7652.	1.7	51
68	A stereodivergent chirospecific synthesis of (3R) and (3S) 3-hydroxyaspartates by hydroxylation of aspartate diester enolates. Tetrahedron Letters, 1992, 33, 4637-4640.	0.7	21
69	Accelerated Synthesis of Dendrimers by Thermal Azide-Alkyne Cycloaddition with Internal Alkynes. Green Chemistry, 0, , .	4.6	3