Changha Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2588453/changha-lee-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,954 81 142 45 h-index g-index citations papers 6.22 8,322 10.1 143 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
142	Fabrication of Ag-doped ZnO/PAN composite nanofibers by electrospinning: Photocatalytic and antiviral activities <i>Korean Journal of Chemical Engineering</i> , 2022 , 1-9	2.8	1
141	Bicarbonate-enhanced generation of hydroxyl radical by visible light-induced photocatalysis of H2O2 over WO3: Alteration of electron transfer mechanism. <i>Chemical Engineering Journal</i> , 2022 , 432, 134401	14.7	2
140	Efficient bicarbonate removal and recovery of ammonium bicarbonate as CO2 utilization using flow-electrode capacitive deionization. <i>Chemical Engineering Journal</i> , 2022 , 431, 134233	14.7	1
139	Visible-light photocatalysis over MIL-53(Fe) for VOC removal and viral inactivation in air. <i>Environmental Engineering Research</i> , 2022 , 27, 210209-0	3.6	О
138	Catalytic Persulfate Activation for Oxidation of Organic Pollutants: A Critical Review on Mechanisms and Controversies. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 107654	6.8	1
137	Improvement in the desalination performance of membrane capacitive deionization with a bipolar electrode via an energy recovery process. <i>Chemical Engineering Journal</i> , 2022 , 439, 135603	14.7	0
136	The Photo-Fenton System. <i>Springer Handbooks</i> , 2022 , 1719-1734	1.3	
135	New method for electrochemical ion separation (ElONS) for chloride/nitrate separation using Ag/AgCl electrodes with a cation exchange membrane. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106876	6.8	0
134	Long-term and stable antimicrobial properties of immobilized Ni/TiO nanocomposites against Escherichia coli, Legionella thermalis, and MS2 bacteriophage. <i>Environmental Research</i> , 2021 , 194, 1106	5 79	2
133	Chloride-Mediated Enhancement in Heat-Induced Activation of Peroxymonosulfate: New Reaction Pathways for Oxidizing Radical Production. <i>Environmental Science & Environmental </i>	9 ^{10.3}	22
132	Effects of chloride and other anions on electrochemical chlorine evolution over self-doped TiO2 nanotube array. <i>Korean Journal of Chemical Engineering</i> , 2021 , 38, 756-762	2.8	
131	Persulfate enhanced photoelectrochemical oxidation of organic pollutants using self-doped TiOnanotube arrays: Effect of operating parameters and water matrix. <i>Water Research</i> , 2021 , 191, 1168	30 13 .5	6
130	Effect of Fe3+ as an electron-transfer mediator on WO3-induced activation of peroxymonosulfate under visible light. <i>Chemical Engineering Journal</i> , 2021 , 411, 128529	14.7	6
129	Selective fluoride removal in capacitive deionization by reduced graphene oxide/hydroxyapatite composite electrode. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 396-402	9.3	19
128	Nafion-coated Prussian blue electrodes to enhance the stability and efficiency of battery desalination system. <i>Desalination</i> , 2021 , 500, 114778	10.3	3
127	Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and photodynamic cancer therapy. <i>Journal of Colloid and Interface Science</i> , 2021 , 587, 101-109	9.3	4
126	Prediction of Oxidant Exposures and Micropollutant Abatement during Ozonation Using a Machine Learning Method. <i>Environmental Science & Environmental & Enviro</i>	10.3	6

(2020-2021)

contaminant oxidation under visible light illumination. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104598	6.8	3
Degradation of aqueous organic pollutants using an Fe2O3/WO3 composite photocatalyst as a magnetically separable peroxymonosulfate activator. <i>Separation and Purification Technology</i> , 2021 , 267, 118610	8.3	7
Occurrence of unknown reactive species in UV/HO system leading to false interpretation of hydroxyl radical probe reactions. <i>Water Research</i> , 2021 , 201, 117338	12.5	5
Degradation of ranitidine and changes in N-nitrosodimethylamine formation potential by advanced oxidation processes: Role of oxidant speciation and water matrix. <i>Water Research</i> , 2021 , 203, 117495	12.5	7
Ir0.11Fe0.25O0.64 as a highly efficient electrode for electrochlorination in dilute chloride solutions. Journal of Industrial and Engineering Chemistry, 2021 , 102, 155-162	6.3	2
Nonradical activation of peroxymonosulfate by hematite for oxidation of organic compounds: A novel mechanism involving high-valent iron species. <i>Chemical Engineering Journal</i> , 2021 , 426, 130743	14.7	3
Practical scale evaluation of a photocatalytic air purifier equipped with a Titania-zeolite composite bead filter for VOC removal and viral inactivation. <i>Environmental Research</i> , 2021 , 204, 112036	7.9	1
High chlorine evolution performance of electrochemically reduced TiO nanotube array coated with a thin RuO layer by the self-synthetic method <i>RSC Advances</i> , 2021 , 11, 12107-12116	3.7	O
Accelerated oxidation of microcystin-LR by Fe(II)-tetrapolyphosphate/oxygen in the presence of magnesium and calcium ions. <i>Water Research</i> , 2020 , 184, 116172	12.5	
Freezing-enhanced non-radical oxidation of organic pollutants by peroxymonosulfate. <i>Chemical Engineering Journal</i> , 2020 , 388, 124226	14.7	11
Performance analysis of the multi-channel membrane capacitive deionization with porous carbon electrode stacks. <i>Desalination</i> , 2020 , 479, 114315	10.3	13
Visible light-induced activation of peroxymonosulfate in the presence of ferric ions for the degradation of organic pollutants. <i>Separation and Purification Technology</i> , 2020 , 240, 116620	8.3	16
Short Review of Multichannel Membrane Capacitive Deionization: Principle, Current Status, and Future Prospect. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 683	2.6	21
Photocatalytic Oxidation of Organic Compounds by Visible Light-Illuminated g-C3N4-AQ in Combination with Fe(III). <i>Advances in Science, Technology and Innovation</i> , 2020 , 91-93	0.3	1
Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater. <i>Journal of Water Process Engineering</i> , 2020 , 33, 101037	6.7	33
Modeling of ozone decomposition, oxidant exposures, and the abatement of micropollutants during ozonation processes. <i>Water Research</i> , 2020 , 169, 115230	12.5	14
Reduction of chlorendic acid by zero-valent iron: Kinetics, products, and pathways. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121269	12.8	5
Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization. <i>Journal of Colloid and Interface Science</i> , 2020 , 564, 1-7	9.3	28
	contaminant oxidation under visible light illumination. <i>Journal of Environmental Chemical Engineering</i> , 2021, 9, 104598 Degradation of aqueous organic pollutants using an Fe2O3/WO3 composite photocatalyst as a magnetically separable peroxymonosulfate activator. <i>Separation and Purification Technology</i> , 2021, 267, 118610 Occurrence of unknown reactive species in UV/HO system leading to false interpretation of hydroxyl radical probe reactions. <i>Water Research</i> , 2021, 201, 117338 Degradation of ranitidine and changes in N-nitrosodimethylamine formation potential by advanced oxidation processes: Role of oxidant speciation and water matrix. <i>Water Research</i> , 2021, 203, 117495 Ir0.11Fe0.25O0.64 as a highly efficient electrode for electrochlorination in dilute chloride solutions. <i>Journal of Industrial and Engineering Chemistry</i> , 2021, 102, 155-162 Nonradical activation of peroxymonosulfate by hematite for oxidation of organic compounds: A novel mechanism involving high-valent iron species. <i>Chemical Engineering Journal</i> , 2021, 426, 130743 Practical scale evaluation of a photocatalytic air purifier equipped with a Titania-zeolite composite bead filter for VOC removal and viral inactivation. <i>Environmental Research</i> , 2021, 204, 112036 High chlorine evolution performance of electrochemically reduced TiO nanotube array coated with a thin RuO layer by the self-synthetic method. <i>RSC Advances</i> , 2021, 11, 12107-12116 Accelerated oxidation of microcystin-LR by Fe(II)-tetrapolyphosphate/oxygen in the presence of magnesium and calcium ions. <i>Water Research</i> , 2020, 184, 116172 Freezing-enhanced non-radical oxidation of organic pollutants by peroxymonosulfate. <i>Chemical Engineering Journal</i> , 2020, 388, 124226 Performance analysis of the multi-channel membrane capacitive deionization with porous carbon electrode stacks. <i>Desalination</i> , 2020, 479, 114315 Visible light-induced activation of peroxymonosulfate in the presence of ferric ions for the degradation of organic pollutants. <i>Separation and Purification Technology</i>	contaminant oxidation under visible light illumination. <i>Journal of Environmental Chemical Engineering</i> , 2021, 9, 104598 Degradation of aqueous organic pollutants using an Fe2O3/WO3 composite photocatalyst as a magnetically separable peroxymonosulfate activator. <i>Separation and Purification Technology</i> , 2021, 205, 118610 Occurrence of unknown reactive species in UV/HO system leading to false interpretation of hydroxyl radical probe reactions. <i>Water Research</i> , 2021, 201, 117338 Degradation of ranitidine and changes in N-nitrosodimethylamine formation potential by advanced oxidation processes: Role of oxidant speciation and water matrix. <i>Water Research</i> , 2021, 203, 117495 Iro.11Fe0.2500.64 as a highly efficient electrode for electrochlorination in dilute chloride solutions. <i>Journal of Industrial and Engineering Chemistry</i> , 2021, 102, 155-162 Nonradical activation of peroxymonosulfate by hematite for oxidation of organic compounds: A novel mechanism involving high-valent iron species. <i>Chemical Engineering Journal</i> , 2021, 426, 130743 147 Practical scale evaluation of a photocatalytic air purifier equipped with a Titania-zeolite composite bead filter for VOC removal and viral inactivation. <i>Environmental Research</i> , 2021, 204, 112036 High chlorine evolution performance of electrochemically reduced TiO nanotube array coated with a thin RuO layer by the self-synthetic method. <i>RSC Advances</i> , 2021, 11, 12107-12116 Accelerated oxidation of microcystin-LR by Fe(II)-tetrapolyphosphate/oxygen in the presence of magnesium and calcium ions. <i>Water Research</i> , 2020, 184, 116172 Freezing-enhanced non-radical oxidation of organic pollutants by peroxymonosulfate. <i>Chemical Engineering Journal</i> , 2020, 388, 124226 Performance analysis of the multi-channel membrane capacitive deionization with porous carbon electrode stacks. <i>Desalination</i> , 2020, 479, 114315 Visible light-induced activation of peroxymonosulfate in the presence of ferric ions for the degradation of organic Pollutants. <i>Separation and Purification Technology</i> ,

107	Comment on "Visible-light-driven, hierarchically heterostructured, and flexible silver/bismuth oxyiodide/titania nanofibrous membranes for highly efficient water disinfection" by Song et al. <i>Journal of Colloid and Interface Science</i> , 2020 , 566, 513-514	9.3	
106	Nickel-Nickel oxide nanocomposite as a magnetically separable persulfate activator for the nonradical oxidation of organic contaminants. <i>Journal of Hazardous Materials</i> , 2020 , 388, 121767	12.8	14
105	Activation of Hydrogen Peroxide by a Titanium Oxide-Supported Iron Catalyst: Evidence for Surface Fe(IV) and Its Selectivity. <i>Environmental Science & Environmental Science &</i>	10.3	20
104	Cupric ion in combination with hydrogen peroxide and hydroxylamine applied to inactivation of different microorganisms. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123305	12.8	3
103	Versatile Yolk-Shell Encapsulation: Catalytic, Photothermal, and Sensing Demonstration. <i>Small</i> , 2020 , 16, e2002311	11	10
102	Use of High-Valent Metal Species Produced by the Fenton (-like) Reactions in Water Treatment. <i>Advances in Science, Technology and Innovation</i> , 2020 , 89-89	0.3	
101	Inactivation of bacterial planktonic cells and biofilms by Cu(II)-activated peroxymonosulfate in the presence of chloride ion. <i>Chemical Engineering Journal</i> , 2020 , 380, 122468	14.7	12
100	Enhancement in Desalination Performance of Battery Electrodes via Improved Mass Transport Using a Multichannel Flow System. <i>ACS Applied Materials & Desalination Performance of Battery Electrodes via Improved Mass Transport Using a Multichannel Flow System. ACS Applied Materials & Desalination Performance of Battery Electrodes via Improved Mass Transport Using a Multichannel Flow System. ACS Applied Materials & Desalination Performance of Battery Electrodes via Improved Mass Transport Using a Multichannel Flow System. ACS Applied Materials & Desalination Performance of Battery Electrodes via Improved Mass Transport Using a Multichannel Flow System. ACS Applied Materials & Desalination Performance of Battery Electrodes via Improved Mass Transport Using a Multichannel Flow System. ACS Applied Materials & Desalination Performance of Battery Electrodes via Improved Mass Transport Using Account Performance of Battery Electrodes via Improved Mass Transport Via Improved Via Improved Mass Transport Via Improved Via Improved</i>	9.5	18
99	Ag-doped graphitic carbon nitride photocatalyst with remarkably enhanced photocatalytic activity towards antibiotic in hospital wastewater under solar light. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 80, 597-605	6.3	27
98	Differential Microbicidal Effects of Bimetallic Iron-Copper Nanoparticles on Escherichia coli and MS2 Coliphage. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	20
97	Ozonation of Microcystins: Kinetics and Toxicity Decrease. <i>Environmental Science & Environmental Scie</i>	10.3	12
96	Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: Multiple pathways for sulfate radical generation. <i>Applied Catalysis B: Environmental</i> , 2019 , 254, 156-165	21.8	45
95	Spontaneous Generation of HO and Hydroxyl Radical through O Reduction on Copper Phosphide under Ambient Aqueous Condition. <i>Environmental Science & Environmental Science & En</i>	10.3	51
94	Inactivation of Escherichia coli and MS2 coliphage via singlet oxygen generated by homogeneous photosensitization. <i>Korean Journal of Chemical Engineering</i> , 2019 , 36, 1785-1790	2.8	2
93	Novel Reuse Strategy in Flow-Electrode Capacitive Deionization with Switch Cycle Operation To Enhance Desalination Performance. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 739-744	11	15
92	Effect of Hydrophilicity of Activated Carbon Electrodes on Desalination Performance in Membrane Capacitive Deionization. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 5055	2.6	10
91	La-modified ZSM-5 zeolite beads for enhancement in removal and recovery of phosphate. <i>Microporous and Mesoporous Materials</i> , 2019 , 279, 37-44	5.3	44
90	Activation of Periodate by Freezing for the Degradation of Aqueous Organic Pollutants. <i>Environmental Science & Environmental </i>	10.3	38

(2017-2018)

89	Oxidation of organic pollutants by peroxymonosulfate activated with low-temperature-modified nanodiamonds: Understanding the reaction kinetics and mechanism. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 432-441	21.8	91
88	Nitrite ion mitigates the formation of N-nitrosodimethylamine (NDMA) during chloramination of ranitidine. <i>Science of the Total Environment</i> , 2018 , 633, 352-359	10.2	13
87	Comment on "Investigation of the Iron-Peroxo Complex in the Fenton Reaction: Kinetic Indication, Decay Kinetics, and Hydroxyl Radical Yields". <i>Environmental Science & Environmental Science & Enviro</i>	4 82 3	1
86	Synchronized methylene blue removal using Fenton-like reaction induced by phosphorous oxoanion and submerged plasma irradiation process. <i>Journal of Environmental Management</i> , 2018 , 206, 77-84	7.9	10
85	Chloride-enhanced oxidation of organic contaminants by Cu(II)-catalyzed Fenton-like reaction at neutral pH. <i>Journal of Hazardous Materials</i> , 2018 , 344, 1174-1180	12.8	53
84	Electrochemical Peroxodisulfate (PDS) Generation on a Self-Doped TiO2 Nanotube Array Electrode. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 11465-11471	3.9	9
83	Binder-free immobilization of TiO photocatalyst on steel mesh via electrospraying and hot-pressing and its application for organic micropollutant removal and disinfection. <i>Journal of Hazardous Materials</i> , 2018 , 360, 62-70	12.8	11
82	Enhanced Oxidation of Phenol by Copper-catalyzed Fenton-like Reaction in the Presence of Bicarbonate. <i>Journal of Advanced Oxidation Technologies</i> , 2018 , 21, 54-66		2
81	Visible light-photosensitized oxidation of organic pollutants using amorphous peroxo-titania. <i>Applied Catalysis B: Environmental</i> , 2018 , 225, 487-495	21.8	22
80	Oxidation of Microcystins by Permanganate: pH and Temperature-Dependent Kinetics, Effect of DOM Characteristics, and Oxidation Mechanism Revisited. <i>Environmental Science & Environmental Science & E</i>	10.3	22
79	Accelerated redox reaction between chromate and phenolic pollutants during freezing. <i>Journal of Hazardous Materials</i> , 2017 , 329, 330-338	12.8	28
78	Oxidation of microcystin-LR by ferrous-tetrapolyphosphate in the presence of oxygen and hydrogen peroxide. <i>Water Research</i> , 2017 , 114, 277-285	12.5	20
77	Reply to comment on "Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes by Hye-Jin Lee, Hyung-Eun Kim, Changha Lee [Water Research 110, 2017, 83-90]". <i>Water Research</i> , 2017 , 118, 291-292	12.5	
76	Response to Comment on "Activation of Persulfate by Graphitized Nanodiamonds for Removal of Organic Compounds". <i>Environmental Science & Environmental Science & Environmental</i>	10.3	13
75	Nanoparticulate zero-valent iron coupled with polyphosphate: the sequential redox treatment of organic compounds and its stability and bacterial toxicity. <i>Environmental Science: Nano</i> , 2017 , 4, 396-405	;7·1	9
74	Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes. <i>Water Research</i> , 2017 , 110, 83-90	12.5	25
73	Inactivation of biofilms on RO membranes by copper ion in combination with norspermidine. <i>Desalination</i> , 2017 , 424, 95-101	10.3	7
72	Adsorption of As(V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions. <i>Chemosphere</i> , 2017 , 169, 99-106	8.4	38

71	Visible-light-induced activation of periodate that mimics dye-sensitization of TiO2: Simultaneous decolorization of dyes and production of oxidizing radicals. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 475-484	21.8	62
70	Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater. <i>Water Research</i> , 2017 , 109, 237-244	12.5	8
69	Science Walden: Exploring the Convergence of Environmental Technologies with Design and Art. <i>Sustainability</i> , 2017 , 9, 35	3.6	1
68	Electrochemical ozone production in inert supporting electrolytes on a boron-doped diamond electrode with a solid polymer electrolyte electrolyzer. <i>Desalination and Water Treatment</i> , 2016 , 57, 10)152-10	158
67	Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds. <i>Environmental Science & Degradation of Organic Compounds</i> . 2016, 50, 10187-97	10.3	169
66	Disintegration of Waste Activated Sludge by Thermally-Activated Persulfates for Enhanced Dewaterability. <i>Environmental Science & Enhanced</i> 2016, 50, 7106-15	10.3	159
65	Oxidative treatment of waste activated sludge by different activated persulfate systems for enhancing sludge dewaterability. <i>Sustainable Environment Research</i> , 2016 , 26, 177-183	3.8	35
64	Activation of Oxygen and Hydrogen Peroxide by Copper(II) Coupled with Hydroxylamine for Oxidation of Organic Contaminants. <i>Environmental Science & Environmental Science & En</i>	10.3	110
63	Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	361
62	Highly reusable TiO2 nanoparticle photocatalyst by direct immobilization on steel mesh via PVDF coating, electrospraying, and thermal fixation. <i>Chemical Engineering Journal</i> , 2016 , 306, 344-351	14.7	41
61	Fate of engineered nanoparticles: Implications in the environment. <i>Coordination Chemistry Reviews</i> , 2015 , 287, 64-78	23.2	153
60	Distinctive green recovery of silver species from modified cellulose: mechanism and spectroscopic studies. <i>International Journal of Biological Macromolecules</i> , 2015 , 76, 109-18	7.9	10
59	Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants. <i>Water Research</i> , 2015 , 86, 66-73	12.5	45
58	Distinct adsorption enhancement of bi-component metals (cobalt and nickel) by Fireweed-derived carbon compared to activated carbon: Incorporation of surface group distributions for increased efficiency. <i>Chemical Engineering Journal</i> , 2015 , 281, 713-723	14.7	28
57	Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: The effects of pH and dissolved organic matter characteristics. <i>Water Research</i> , 2015 , 86, 25-34	12.5	51
56	Synthesis and characterization of metal-doped reduced graphene oxide composites, and their application in removal of Escherichia coli, arsenic and 4-nitrophenol. <i>Journal of Industrial and Engineering Chemistry</i> , 2015 , 29, 282-288	6.3	44
55	Enhanced production of reactive oxidants by Fenton-like reactions in the presence of carbon materials. <i>Chemical Engineering Journal</i> , 2015 , 273, 502-508	14.7	45
54	Photocatalytic applications of paper-like poly(vinylidene fluoride)-titanium dioxide hybrids fabricated using a combination of electrospinning and electrospraying. <i>Journal of Hazardous Materials</i> , 2015 , 285, 267-76	12.8	41

53	Effects of inorganic oxidants on kinetics and mechanisms of WO 3 -mediated photocatalytic degradation. <i>Applied Catalysis B: Environmental</i> , 2015 , 162, 515-523	21.8	55
52	Enhanced Inactivation of Escherichia coli and MS2 Coliphage by Cupric Ion in the Presence of Hydroxylamine: Dual Microbicidal Effects. <i>Environmental Science & Environmental & Enviro</i>	10.3	44
51	Reaction of aqueous iodide at high concentration with O3 and O3/H2O2 in the presence of natural organic matter: implications for drinking water treatment. <i>Environmental Chemistry Letters</i> , 2015 , 13, 453-458	13.3	14
50	Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. <i>Chemical Engineering Journal</i> , 2015 , 266, 28-33	14.7	413
49	Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review. <i>Environmental Engineering Research</i> , 2015 , 20, 205-211	3.6	24
48	Degradation of diclofenac and carbamazepine by the copper(II)-catalyzed dark and photo-assisted Fenton-like systems. <i>Chemical Engineering Journal</i> , 2014 , 245, 258-264	14.7	87
47	Synthesis of graphenedarbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications. <i>Chemical Engineering Journal</i> , 2014 , 244, 160-167	14.7	86
46	Electrochromic titania nanotube arrays for the enhanced photocatalytic degradation of phenol and pharmaceutical compounds. <i>Chemical Engineering Journal</i> , 2014 , 249, 285-292	14.7	54
45	Single-step green synthesis of imine-functionalized carbon spheres and their application in uranium removal from aqueous solution. <i>RSC Advances</i> , 2014 , 4, 46114-46121	3.7	18
44	Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles. <i>Environmental Science & Environmental Sci</i>	10.3	62
43	Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3. <i>Electrochimica Acta</i> , 2014 , 115, 140-145	6.7	33
42	Effects of advanced treatments using granular activated carbon adsorption with ozonation and ultrafiltration on chlorine decay. <i>Desalination and Water Treatment</i> , 2014 , 52, 976-984		2
41	Raspberry derived mesoporous carbon-tubules and fixed-bed adsorption of pharmaceutical drugs. Journal of Industrial and Engineering Chemistry, 2014 , 20, 1126-1132	6.3	47
40	Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study. <i>Journal of Hazardous Materials</i> , 2014 , 265, 201-7	12.8	41
39	Kinetic enhancement in photocatalytic oxidation of organic compounds by WO3 in the presence of Fenton-like reagent. <i>Applied Catalysis B: Environmental</i> , 2013 , 138-139, 311-317	21.8	49
38	Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. <i>Cement and Concrete Research</i> , 2013 , 54, 208-214	10.3	207
37	Protocol for development of various plants leaves extract in single-pot synthesis of metal nanoparticles. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy,</i> 2013 , 103, 134-42	4.4	29
36	pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. <i>Chemosphere</i> , 2013 , 92, 652-8	8.4	121

35	Microbial inactivation by cupric ion in combination with H2O2: role of reactive oxidants. <i>Environmental Science & Environmental Science & Environment</i>	10.3	64
34	Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic. <i>Chemosphere</i> , 2012 , 89, 1230-7	8.4	68
33	Role of reactive oxygen species in Escherichia coli inactivation by cupric ion. <i>Environmental Science</i> & amp; Technology, 2012, 46, 11299-304	10.3	57
32	Carbon nanotube-based membranes: Fabrication and application to desalination. <i>Journal of Industrial and Engineering Chemistry</i> , 2012 , 18, 1551-1559	6.3	144
31	Synergistic effects of TiO2 photocatalysis in combination with Fenton-like reactions on oxidation of organic compounds at circumneutral pH. <i>Applied Catalysis B: Environmental</i> , 2012 , 115-116, 219-224	21.8	62
30	Photosensitized oxidation of emerging organic pollutants by tetrakis CII aminofullerene-derivatized silica under visible light irradiation. <i>Environmental Science & Emp; Technology</i> , 2011 , 45, 10598-604	10.3	85
29	Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. <i>Environmental Science & Environmental Scienc</i>	10.3	95
28	Comment on "Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction". <i>Environmental Science & Discounty (Sention of Science & Comp.; Technology</i> , 2011 , 45, 3177-8; author reply 3179-80	10.3	14
27	Magnetic mesoporous materials for removal of environmental wastes. <i>Journal of Hazardous Materials</i> , 2011 , 192, 1140-7	12.8	71
26	Inactivation of MS2 bacteriophage by streamer corona discharge in water. <i>Chemosphere</i> , 2011 , 82, 113.	5-8 _. Q	23
26 25	Inactivation of MS2 bacteriophage by streamer corona discharge in water. <i>Chemosphere</i> , 2011 , 82, 113 Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide. <i>Journal of Hazardous Materials</i> , 2011 , 188, 357-62	5- 8 .Q.	23 18
	Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron	•	
25	Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide. <i>Journal of Hazardous Materials</i> , 2011 , 188, 357-62 Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. <i>Applied and</i>	12.8	18
25 24	Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide. <i>Journal of Hazardous Materials</i> , 2011 , 188, 357-62 Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7668-70	12.8	18
252423	Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide. <i>Journal of Hazardous Materials</i> , 2011 , 188, 357-62 Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7668-70 Inactivation of MS2 coliphage by Fenton's reagent. <i>Water Research</i> , 2010 , 44, 2647-53 A Novel Homogeneous Fenton-like System with Fe(III)-Phosphotungstate for Oxidation of Organic	12.8	18 108 53
25 24 23 22	Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide. <i>Journal of Hazardous Materials</i> , 2011 , 188, 357-62 Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7668-70 Inactivation of MS2 coliphage by Fenton's reagent. <i>Water Research</i> , 2010 , 44, 2647-53 A Novel Homogeneous Fenton-like System with Fe(III)-Phosphotungstate for Oxidation of Organic Compounds at Neutral pH Values. <i>Journal of Molecular Catalysis A</i> , 2009 , 311, 1-6 A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values.	12.8 4.8 12.5	18 108 53 87
25 24 23 22 21	Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide. <i>Journal of Hazardous Materials</i> , 2011 , 188, 357-62 Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7668-70 Inactivation of MS2 coliphage by Fenton's reagent. <i>Water Research</i> , 2010 , 44, 2647-53 A Novel Homogeneous Fenton-like System with Fe(III)-Phosphotungstate for Oxidation of Organic Compounds at Neutral pH Values. <i>Journal of Molecular Catalysis A</i> , 2009 , 311, 1-6 A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. <i>Environmental Science & Discourse in the Compound of Molecular Catalysis A</i> , 2009 , 311, 1-6 Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of	12.8 4.8 12.5	18 108 53 87 271

LIST OF PUBLICATIONS

17	Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): kinetics and effect on the NDMA formation potential of natural waters. <i>Water Research</i> , 2008 , 42, 433-41	12.5	82
16	Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. <i>Environmental Science & Escherichia coli. Environmental Science & Escherichia coli. Escherichia co</i>	10.3	557
15	Response to Comment on P olyoxometalate-Enhanced Oxidation of Organic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in the Presence of Oxygen[]Environmental Science & Compound & C	10.3	2
14	UV direct photolysis of 2,2?-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in aqueous solution: Kinetics and mechanism. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 197, 232-238	4.7	28
13	Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: kinetics and effect on NDMA formation potential. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	193
12	UV-A induced photochemical formation of N-nitrosodimethylamine (NDMA) in the presence of nitrite and dimethylamine. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 189, 128-134	4.7	28
11	Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. <i>Water Research</i> , 2007 , 41, 581-90	12.5	187
10	Oxidative degradation of dimethylsulfoxide by locally concentrated hydroxyl radicals in streamer corona discharge process. <i>Chemosphere</i> , 2006 , 65, 1163-70	8.4	26
9	UV photolytic mechanism of N-nitrosodimethylamine in water: dual pathways to methylamine versus dimethylamine. <i>Environmental Science & Environmental </i>	10.3	103
8	UV photolytic mechanism of N-nitrosodimethylamine in water: roles of dissolved oxygen and solution pH. <i>Environmental Science & amp; Technology</i> , 2005 , 39, 9702-9	10.3	78
7	Application of photoactivated periodate to the decolorization of reactive dye: reaction parameters and mechanism. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2004 , 165, 35-41	4.7	59
6	Temperature dependence of hydroxyl radical formation in the hv/Fe3+/H2O2 and Fe3+/H2O2 systems. <i>Chemosphere</i> , 2004 , 56, 923-34	8.4	71
5	Determination of quantum yields for the photolysis of Fe(III)-hydroxo complexes in aqueous solution using a novel kinetic method. <i>Chemosphere</i> , 2004 , 57, 1449-58	8.4	30
4	Kinetics and mechanisms of DMSO (dimethylsulfoxide) degradation by UV/H(2)O(2) process. <i>Water Research</i> , 2004 , 38, 2579-88	12.5	73
3	High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe3+/H(2)O(2) system. <i>Chemosphere</i> , 2003 , 51, 963-71	8.4	59
2	Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H(2)O(2) process. <i>Chemosphere</i> , 2003 , 51, 901-12	8.4	43
1	Practical selection of microorganisms indicating the stability of pathogenic removal in water treatment plants. <i>Water Science and Technology: Water Supply</i> , 2002 , 2, 373-380	1.4	