Chih-I Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2588327/publications.pdf

Version: 2024-02-01

53751 42364 9,316 185 45 92 citations h-index g-index papers 185 185 185 13930 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Monolayer MoS ₂ Heterojunction Solar Cells. ACS Nano, 2014, 8, 8317-8322.	7.3	1,081
2	Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593, 211-217.	13.7	579
3	Monolayer MoSe ₂ Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano, 2014, 8, 8582-8590.	7.3	515
4	Highly Efficient Organic Blue Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)carbazole as the Host Material. Advanced Materials, 2006, 18, 1216-1220.	11.1	460
5	Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nature Communications, 2018, 9, 169.	5 . 8	350
6	Highly Efficient Visible Light Photocatalytic Reduction of CO ₂ to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Letters, 2014, 14, 6097-6103.	4.5	312
7	An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage. Advanced Functional Materials, 2015, 25, 361-366.	7.8	267
8	A Flexible, Stretchable and Shapeâ€Adaptive Approach for Versatile Energy Conversion and Selfâ€Powered Biomedical Monitoring. Advanced Materials, 2015, 27, 3817-3824.	11.1	227
9	Using n- and p-Type Bi ₂ Te ₃ Topological Insulator Nanoparticles To Enable Controlled Femtosecond Mode-Locking of Fiber Lasers. ACS Photonics, 2015, 2, 481-490.	3.2	197
10	13% Efficiency Hybrid Organic/Silicon-Nanowire Heterojunction Solar Cell <i>via</i> Interface Engineering. ACS Nano, 2013, 7, 10780-10787.	7.3	194
11	Electronic structures and electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for organic light-emitting devices. Applied Physics Letters, 2006, 88, 152104.	1.5	160
12	A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate. ACS Nano, 2014, 8, 1784-1791.	7.3	155
13	Hydroxynaphthyridine-Derived Group III Metal Chelates: Wide Band Gap and Deep Blue Analogues of Green Alq ₃ (Tris(8-hydroxyquinolate)aluminum) and Their Versatile Applications for Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2009, 131, 763-777.	6.6	151
14	Probing Surface Band Bending of Surface-Engineered Metal Oxide Nanowires. ACS Nano, 2012, 6, 9366-9372.	7.3	149
15	A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells. Nano Energy, 2017, 36, 260-267.	8.2	135
16	Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3topological insulator particles. Laser Physics Letters, 2014, 11, 055107.	0.6	125
17	Employing ambipolar oligofluorene as the charge-generation layer in time-of-flight mobility measurements of organic thin films. Applied Physics Letters, 2006, 88, 064102.	1.5	123
18	Niâ€Nanocluster Modified Black TiO ₂ with Dual Active Sites for Selective Photocatalytic CO ₂ Reduction. Small, 2018, 14, 1702928.	5.2	116

#	Article	IF	CITATIONS
19	High Density Unaggregated Au Nanoparticles on ZnO Nanorod Arrays Function as Efficient and Recyclable Photocatalysts for Environmental Purification. Small, 2013, 9, 3169-3182.	5.2	114
20	Triphenylsilyl- and Trityl-Substituted Carbazole-Based Host Materials for Blue Electrophosphorescence. ACS Applied Materials & Samp; Interfaces, 2009, 1, 567-574.	4.0	112
21	Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon. Nano Energy, 2022, 93, 106809.	8.2	110
22	Mixed host organic light-emitting devices with low driving voltage and long lifetime. Applied Physics Letters, 2005, 86, 103506.	1.5	105
23	Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance. Small, 2017, 13, 1604305.	5.2	103
24	Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes. Nano Energy, 2015, 18, 109-117.	8.2	97
25	Electron affinity at aluminum nitride surfaces. Applied Physics Letters, 1998, 73, 1346-1348.	1.5	93
26	Transparent and Flexible Inorganic Perovskite Photonic Artificial Synapses with Dualâ€Mode Operation. Advanced Functional Materials, 2021, 31, 2008259.	7.8	83
27	Large AuAg Alloy Nanoparticles Synthesized in Organic Media Using a Oneâ€Pot Reaction: Their Applications for Highâ€Performance Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2012, 22, 3975-3984.	7.8	82
28	Correlations of impedance–voltage characteristics and carrier mobility in organic light emitting diodes. Organic Electronics, 2012, 13, 13-17.	1.4	76
29	Highly Emissive Dinuclear Platinum(III) Complexes. Journal of the American Chemical Society, 2020, 142, 7469-7479.	6.6	76
30	Application of F4TCNQ doped spiro-MeOTAD in high performance solid state dye sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 11689.	1.3	75
31	Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions. Advanced Functional Materials, 2017, 27, 1603756.	7.8	74
32	Enhancing Optical Nonlinearity in a Nonstoichiometric SiN Waveguide for Cross-Wavelength All-Optical Data Processing. ACS Photonics, 2015, 2, 1141-1154.	3.2	72
33	Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats. Advanced Materials, 2018, 30, 1704955.	11.1	72
34	High-luminescence non-doped green OLEDs based on a 9,9-diarylfluorene-terminated 2,1,3-benzothiadiazole derivative. Journal of Materials Chemistry, 2009, 19, 773-780.	6.7	70
35	A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection. Organic Electronics, 2011, 12, 1763-1767.	1.4	70
36	A solution-processed molybdenum oxide treated silver nanowire network: a highly conductive transparent conducting electrode with superior mechanical and hole injection properties. Nanoscale, 2015, 7, 4572-4579.	2.8	68

#	Article	IF	Citations
37	Si-rich SiNx based Kerr switch enables optical data conversion up to 12â€Gbit/s. Scientific Reports, 2015, 5, 9611.	1.6	63
38	Ultrahigh Responsivity and Detectivity Graphene–Perovskite Hybrid Phototransistors by Sequential Vapor Deposition. Scientific Reports, 2017, 7, 46281.	1.6	61
39	Energy structures and chemical reactions at the Alâ^•LiFâ^•Alq3 interfaces studied by synchrotron-radiation photoemission spectroscopy. Applied Physics Letters, 2005, 87, 212108.	1.5	60
40	A thermally cured 9,9-diarylfluorene-based triaryldiamine polymer displaying high hole mobility and remarkable ambient stability. Journal of Materials Chemistry, 2009, 19, 3618.	6.7	54
41	New Molecular Donors with Dithienopyrrole as the Electron-Donating Group for Efficient Small-Molecule Organic Solar Cells. Chemistry of Materials, 2014, 26, 4361-4367.	3.2	54
42	Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Scientific Reports, 2015, 5, 9693.	1.6	54
43	KSCN-induced Interfacial Dipole in Black TiO ₂ for Enhanced Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2019, 11, 25186-25194.	4.0	54
44	Formation of perfect ohmic contact at indium tin oxide/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine interface using ReO3. Scientific Reports, 2014, 4, 3902.	1.6	47
45	Strong optical nonlinearity of the nonstoichiometric silicon carbide. Journal of Materials Chemistry C, 2015, 3, 10164-10176.	2.7	47
46	Electronic and chemical properties of molybdenum oxide doped hole injection layers in organic light emitting diodes. Journal of Applied Physics, 2009, 105, 033717.	1.1	46
47	The roles of thermally evaporated cesium carbonate to enhance the electron injection in organic light emitting devices. Journal of Applied Physics, 2008, 104, .	1.1	44
48	Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes. Organic Electronics, 2013, 14, 1204-1210.	1.4	44
49	Ultrasensitive Photoresponsive Devices Based on Graphene/Bil ₃ van der Waals Epitaxial Heterostructures. Advanced Functional Materials, 2018, 28, 1800179.	7.8	44
50	Rubidium-Carbonate-Doped 4,7-Diphenyl-1,10-phenanthroline Electron Transporting Layer for High-Efficiency p-i-n Organic Light Emitting Diodes. Electrochemical and Solid-State Letters, 2009, 12, J8.	2.2	40
51	Graphene Anodes and Cathodes: Tuning the Work Function of Graphene by Nearly 2 eV with an Aqueous Intercalation Process. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17155-17161.	4.0	40
52	Near-Infrared Emission Induced by Shortened Ptâ€"Pt Contact: Diplatinum(II) Complexes with Pyridyl Pyrimidinato Cyclometalates. Inorganic Chemistry, 2019, 58, 13892-13901.	1.9	40
53	High-Quality Conformal Homogeneous All-Vacuum Deposited CsPbCl ₃ Thin Films and Their UV Photodiode Applications. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 47054-47062.	4.0	40
54	High On-State Current in Chemical Vapor Deposited Monolayer MoS ₂ nFETs With Sn Ohmic Contacts. IEEE Electron Device Letters, 2021, 42, 272-275.	2.2	38

#	Article	IF	Citations
55	Finite Silicon Atom Diffusion Induced Size Limitation on Self-Assembled Silicon Quantum Dots in Silicon-Rich Silicon Carbide. Journal of the Electrochemical Society, 2011, 159, K35-K41.	1.3	36
56	Shape-Dependent Light Harvesting of 3D Gold Nanocrystals on Bulk Heterojunction Solar Cells: Plasmonic or Optical Scattering Effect?. Journal of Physical Chemistry C, 2015, 119, 7554-7564.	1.5	36
57	Atomic-Scale Structural and Chemical Characterization of Hexagonal Boron Nitride Layers Synthesized at the Wafer-Scale with Monolayer Thickness Control. Chemistry of Materials, 2017, 29, 4700-4707.	3.2	36
58	Boosting thin-film perovskite solar cell efficiency through vacuum-deposited sub-nanometer small-molecule electron interfacial layers. Nano Energy, 2017, 38, 66-71.	8.2	34
59	Aluminum, magnesium, and gold contacts to contamination free n-GaN surfaces. Journal of Applied Physics, 2001, 89, 425-429.	1.1	33
60	Characterization of the Ultrathin \$hbox{HfO}_{2}\$ and Hf-Silicate Films Grown by Atomic Layer Deposition. IEEE Transactions on Electron Devices, 2007, 54, 759-766.	1.6	32
61	Electronic and chemical properties of cathode structures using 4,7-diphenyl-1,10-phenanthroline doped with rubidium carbonate as electron injection layers. Journal of Applied Physics, 2009, 105, 113714.	1.1	32
62	Enriching Si quantum dots in a Si-rich SiN _x matrix for strong χ ⁽³⁾ optical nonlinearity. Journal of Materials Chemistry C, 2016, 4, 1405-1413.	2.7	32
63	Fabricating graphite nano-sheet powder by slow electrochemical exfoliation of large-scale graphite foil as a mode-locker for fiber lasers. Optical Materials Express, 2013, 3, 1893.	1.6	31
64	An electron-transporting host material compatible with diverse triplet emitters used for highly efficient red- and green-electrophosphorescent devices. Chemical Communications, 2008, , 4956.	2.2	30
65	Enhancement of current injection in organic light emitting diodes with sputter treated molybdenum oxides as hole injection layers. Applied Physics Letters, 2011, 98, 173302.	1.5	28
66	Performance enhancement in inverted polymer photovoltaics with solution-processed MoO and air-plasma treatment for anode modification. Solar Energy Materials and Solar Cells, 2013, 109, 178-184.	3.0	28
67	Antimony Semimetal Contact with Enhanced Thermal Stability for High Performance 2D Electronics. , 2021, , .		28
68	Atomic-Layer Controlled Interfacial Band Engineering at Two-Dimensional Layered PtSe ₂ /Si Heterojunctions for Efficient Photoelectrochemical Hydrogen Production. ACS Nano, 2021, 15, 4627-4635.	7.3	27
69	Morphological evolution of the poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influences on the performance of inverted polymer solar cells with a sol–gel derived zinc oxide electron selective layer. Thin Solid Films, 2010, 518, 4964-4969.	0.8	26
70	Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers. Scientific Reports, 2014, 4, 7559.	1.6	26
71	Growing GaN LEDs on amorphous SiC buffer with variable C/Si compositions. Scientific Reports, 2016, 6, 19757.	1.6	26
72	Vertical 2D/3D Heterojunction of Tin Perovskites for Highly Efficient HTM-Free Perovskite Solar Cell. ACS Applied Energy Materials, 2021, 4, 2041-2048.	2.5	26

#	Article	IF	Citations
73	Influences of evaporation temperature on electronic structures and electrical properties of molybdenum oxide in organic light emitting devices. Journal of Applied Physics, 2010, 107, 053703.	1.1	25
74	Low-Power MCU With Embedded ReRAM Buffers as Sensor Hub for IoT Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2016, 6, 247-257.	2.7	25
75	Highly Sensitive Graphene–Semiconducting Polymer Hybrid Photodetectors with Millisecond Response Time. ACS Photonics, 2017, 4, 2335-2344.	3.2	25
76	High-Efficiency Small-Molecule-Based Organic Light Emitting Devices with Solution Processes and Oxadiazole-Based Electron Transport Materials. ACS Applied Materials & Interfaces, 2013, 5, 10614-10622.	4.0	24
77	Investigations of efficiency improvements in poly(3-hexylthiophene) based organic solar cells using calcium cathodes. Solar Energy Materials and Solar Cells, 2011, 95, 3424-3427.	3.0	23
78	Self-amplitude and self-phase modulation of the charcoal mode-locked erbium-doped fiber lasers. Optics Express, 2013, 21, 25184.	1.7	23
79	Effects of Ga concentration and rapid thermal annealing on the structural, optoelectronic and photoluminescence properties of Ga-doped ZnO thin films. Thin Solid Films, 2016, 605, 30-36.	0.8	22
80	AlN films on GaN: Sources of error in the photoemission measurement of electron affinity. Journal of Applied Physics, 2001, 89, 1991.	1.1	21
81	Correlation of energy band alignment and turn-on voltage in organic light emitting diodes. Applied Physics Letters, 2010, 96, .	1.5	21
82	Characterization of gadolinium oxide thin films with CF4 plasma treatment for resistive switching memory applications. Applied Surface Science, 2013, 276, 497-501.	3.1	21
83	Enhancement in current efficiency in organic light-emitting diodes with incorporation of subphthalocyanine. Applied Physics Letters, 2009, 95, 133302.	1.5	19
84	A Facile, Fabric Compatible, and Flexible Borophene Nanocomposites for Selfâ€Powered Smart Assistive and Wound Healing Applications. Advanced Science, 2022, 9, .	5.6	19
85	Au nanoparticle modified GaN photoelectrode for photoelectrochemical hydrogen generation. Electrochemistry Communications, 2011, 13, 530-533.	2.3	18
86	Easy Access to NO ₂ â€Containing Donor–Acceptor–Acceptor Electron Donors for High Efficiency Smallâ€Molecule Organic Solar Cells. ChemSusChem, 2016, 9, 1433-1441.	3.6	18
87	Cytotoxicity and in Vitro Degradation Kinetics of Foundry-Compatible Semiconductor Nanomembranes and Electronic Microcomponents. ACS Nano, 2018, 12, 9721-9732.	7.3	18
88	Formation of gap states and enhanced current injection efficiency in organic light emitting diodes incorporated with subphthalocyanine. Organic Electronics, 2010, 11, 445-449.	1.4	17
89	Self-assembled monolayer modification of silver source–drain electrodes for high-performance pentacene organic field-effect transistors. Organic Electronics, 2012, 13, 593-598.	1.4	17
90	Comprehensive study of medium-bandgap conjugated polymer merging a fluorinated quinoxaline with branched side chains for highly efficient and air-stable polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 20203-20212.	5.2	17

#	Article	IF	Citations
91	A Fully Transparent Resistive Memory for Harsh Environments. Scientific Reports, 2015, 5, 15087.	1.6	17
92	Enhancing the incorporation compatibility of molybdenum oxides in organic light emitting diodes with gap state formations. Journal of Applied Physics, 2013, 114, 063710.	1.1	16
93	Single-layer organic–inorganic-hybrid thin-film encapsulation for organic solar cells. Journal Physics D: Applied Physics, 2013, 46, 435502.	1.3	16
94	Ultra-high sensitivity graphene photosensors. Applied Physics Letters, 2014, 104, 041110.	1.5	16
95	Germanium-doped Metallic Ohmic Contacts in Black Phosphorus Field-Effect Transistors with Ultra-low Contact Resistance. Scientific Reports, 2017, 7, 16857.	1.6	16
96	Enhancement of current injection in inverted organic light emitting diodes with thermal annealing. Journal of Applied Physics, 2010, 108, .	1.1	15
97	Self-aggregated Si quantum dots in amorphous Si-rich SiC. Journal of Non-Crystalline Solids, 2012, 358, 2126-2129.	1.5	15
98	Single-Layer Blue Electrophosphorescent Organic Light-Emitting Diodes Based on Small-Molecule Mixed Hosts: Comparison between the Solution and Vacuum Fabrication Processes. Japanese Journal of Applied Physics, 2013, 52, 012101.	0.8	15
99	Stabilization of hybrid perovskite CH ₃ NH ₃ PbI ₃ thin films by graphene passivation. Nanoscale, 2017, 9, 19227-19235.	2.8	15
100	SiGeC Waveguide for All-Optical Data Switching. ACS Photonics, 2018, 5, 2251-2260.	3.2	15
101	The effects of MoO3 treatment on inverted PBDTTT-C:PC71BM solar cells. Solar Energy Materials and Solar Cells, 2013, 119, 235-240.	3.0	14
102	Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation. International Journal of Hydrogen Energy, 2013, 38, 14433-14439.	3.8	14
103	Twoâ€Photon Absorptionâ€Free Ultrafast Optical Switching in Carbonâ€Rich Si <i>_x</i> C _{1â^'} <i>_x</i> Microring. Advanced Materials Technologies, 2017, 2, 1700095.	3.0	14
104	Realizing multi-functional all-optical data processing on nanoscale SiC waveguides. Scientific Reports, 2018, 8, 14859.	1.6	14
105	A Comparative Study on the Adsorption Behavior of Pentacene and Perfluoropentacene Molecules on Au(111) Surfaces. Japanese Journal of Applied Physics, 2013, 52, 101601.	0.8	13
106	Bridging donor–acceptor energy offset using organic dopants as energy ladders to improve open-circuit voltages in bulk-heterojunction solar cells. Organic Electronics, 2014, 15, 3458-3464.	1.4	13
107	Strategic Design of Three-Dimensional (3D) Urchin-Like Pt–Ni Nanoalloys: How This Unique Nanostructure Boosts the Bulk Heterojunction Polymer Solar Cells Efficiency to 8.48%. Chemistry of Materials, 2014, 26, 7029-7038.	3.2	13
108	Can silicon carbide serve as a saturable absorber for passive mode-locked fiber lasers?. Scientific Reports, 2015, 5, 16463.	1.6	13

#	Article	IF	CITATIONS
109	Influence of Work Function of Carrier Transport Materials with Perovskite on Switchable Photovoltaic Phenomena. Journal of Physical Chemistry C, 2019, 123, 28668-28676.	1.5	13
110	Formingâ€Free, Nonvolatile, and Flexible Resistive Randomâ€Access Memory Using Bismuth Iodide/van der Waals Materials Heterostructures. Advanced Materials Interfaces, 2020, 7, 2001146.	1.9	13
111	Semi-transparent Si-rich SixC1â^'x p–i–n photovoltaic solar cell grown by hydrogen-free PECVD. RSC Advances, 2014, 4, 18397.	1.7	12
112	A highly responsive hybrid photodetector based on all-inorganic 2D heterojunction consisting of Cs2Pb(SCN)2Br2 and MoS2. Chemical Engineering Journal, 2021, 422, 130112.	6.6	12
113	Improvements of electron injection efficiency using subphthalocyanine mixed with lithium fluoride in cathode structures of organic light emitting diodes. Organic Electronics, 2011, 12, 562-565.	1.4	11
114	Nano-Crystalline Silicon-Based Bottom Gate Thin-Film Transistor Grown by LTPECVD With Hydrogen-Free He Diluted $\{hbox\{SiH\}\}_{4}$. Journal of Display Technology, 2013, 9, 536-544.	1.3	11
115	Organic Lead Halide Nanocrystals Providing an Ultra-Wide Color Gamut with Almost-Unity Photoluminescence Quantum Yield. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25202-25213.	4.0	11
116	Direct large-area growth of graphene on silicon for potential ultra-low-friction applications and silicon-based technologies. Nanotechnology, 2020, 31, 335602.	1.3	10
117	Influences of substitution on electronic structures of oligofluorenes. Applied Physics Letters, 2005, 87, 242107.	1.5	9
118	Transient UV and Visible Luminescent Dynamics of Si-Rich \$hbox{SiO}_{x}\$ Metal–Oxide–Semiconductor Light-Emitting Diodes. IEEE Photonics Journal, 2012, 4, 1351-1364.	1.0	9
119	Stability improvement of organic light emitting diodes by the insertion of hole injection materials on the indium tin oxide substrate. Journal of Applied Physics, 2014, 115, 124510.	1.1	9
120	Semi-transparent silicon-rich silicon carbide photovoltaic solar cells. RSC Advances, 2015, 5, 36262-36269.	1.7	9
121	Rear interface engineering of hybrid organic-silicon nanowire solar cells via blade coating. Optics Express, 2016, 24, A414.	1.7	9
122	An energy-efficient nonvolatile microprocessor considering software-hardware interaction for energy harvesting applications. , 2016, , .		9
123	Zero Dipole Formation at HfGdO/SiO2 Interface by Hf/Gd Dual-Sputtered Method. Journal of the Electrochemical Society, 2011, 158, H502.	1.3	8
124	The investigation of the diffusion length of cathode materials in organic light emitting devices through impedance characteristics. Applied Physics Letters, 2012, 100, .	1.5	8
125	Metal-induced molecular diffusion in [6,6]-phenyl-C61-butyric acid methyl ester poly(3-hexylthiophene) based bulk-heterojunction solar cells. Applied Physics Letters, 2013, 103, 183506.	1.5	8
126	SiC and Si Quantum Dots Co-Precipitated Si-Rich SiC Film with n- and p-Type Dopants Grown by Hydrogen-Free PECVD. ECS Journal of Solid State Science and Technology, 2013, 2, N159-N164.	0.9	8

#	Article	IF	CITATIONS
127	Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts. Journal of Applied Physics, 2013, 114, 173106.	1.1	8
128	Nearly warm white-light emission of silicon-rich amorphous silicon carbide. RSC Advances, 2015, 5, 105239-105247.	1.7	8
129	Spectroscopic studies of the physical origin of environmental aging effects on doped graphene. Journal of Applied Physics, 2016, 119, .	1.1	8
130	Catalytically solid-phase self-organization of nanoporous SnS with optical depolarizability. Nanoscale, 2016, 8, 4579-4587.	2.8	8
131	Solution processable mixed-solvent exfoliated MoS2 nanosheets for efficient and robust organic light-emitting diodes. AIP Advances, 2018, 8, 045006.	0.6	8
132	Ultrathin amorphous Ge film enabling stabilized femtosecond fiber laser pulsation. Optics and Laser Technology, 2021, 136, 106761.	2.2	8
133	Dielectric barrier discharge jet processed TiO ₂ nanoparticle layer for flexible perovskite solar cells. Journal Physics D: Applied Physics, 2022, 55, 034003.	1.3	8
134	Two-dimensional dopant profiling by electrostatic force microscopy using carbon nanotube modified cantilevers. Nanotechnology, 2008, 19, 325703.	1.3	7
135	Effectiveness of tris–(8-Hydroxyquinoline)–aluminum doped with cesium-derivatives in organic light-emitting diodes. Thin Solid Films, 2010, 518, 3942-3944.	0.8	7
136	Highly Transparent p-Type ZnO Thin Films Prepared by Non-Toxic Sol-Gel Process. Electrochemical and Solid-State Letters, 2012, 15, H195.	2.2	7
137	All-Optical Cross-Absorption-Modulation Based Gb/s Switching With Silicon Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 57-69.	1.9	7
138	Enhancing the Catalytic Activity of Tri-iodide Reduction by Tuning the Surface Electronic Structure of PtPd Alloy Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 12722-12729.	1.5	7
139	Delayed Charge Recombination by Openâ€Shell Organics: Its Application in Achieving Superb Photodetectors with Broadband (400â€"1160 nm) Ultrahigh Sensitivity and Stability. Advanced Optical Materials, 2020, 8, 1902179.	3.6	7
140	Through-Space Exciton Delocalization in Segregated HJ-Crystalline Molecular Aggregates. Journal of Physical Chemistry A, 2021, 125, 943-953.	1.1	7
141	Analytical solution to space charge limited currents with exponentially distributed traps. Journal of Applied Physics, 2008, 104, .	1.1	6
142	Low-Power and High-Reliability Gadolinium Oxide Resistive Switching Memory with Remote Ammonia Plasma Treatment. Japanese Journal of Applied Physics, 2013, 52, 04CD07.	0.8	6
143	Effect of different p-dopants in an interconnection unit on the performance of tandem organic solar cells. Organic Electronics, 2014, 15, 1805-1809.	1.4	6
144	Effects of amorphous poly(3â€hexylthiophene) on activeâ€layer structure and solar cells performance. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 975-985.	2.4	6

#	Article	lF	CITATIONS
145	Van der Waals Epitaxy of Horizontally Orientated Bismuth Iodide/Silicon Heterostructure for Nonvolatile Resistiveâ€Switching Memory with Multistate Data Storage. Advanced Materials Interfaces, 2020, 7, 2000630.	1.9	6
146	Enhancing the Performance of Quasi-2D Perovskite Light-Emitting Diodes Using Natural Cyclic Molecules with Distinct Phase Regulation Behaviors. ACS Applied Materials & Distinct Phase Regulation Behaviors. ACS Applied Phase Regulation Behaviors. ACS Applied Phase Regulation Beh	4.0	6
147	Correlation of the electronic structure of an interconnection unit with the device performance of tandem organic solar cells. Journal of Materials Chemistry A, 2014, 2, 5450-5454.	5.2	5
148	Solution p-doped fluorescent polymers for enhanced charge transport of hybrid organic-silicon nanowire photovoltaics. Organic Electronics, 2016, 34, 246-253.	1.4	5
149	Enhanced Electrical Performance of Van der Waals Heterostructure. Advanced Materials Interfaces, 2021, 8, 2001850.	1.9	5
150	Indium tin oxide sol–gel precursor conversion process using the third harmonics of Nd:YAG laser. Applied Surface Science, 2011, 257, 10042-10044.	3.1	4
151	Tuning energy levels in magnesium modified Alq3. Journal of Applied Physics, 2011, 109, 083541.	1.1	4
152	Optimization of polymer light emitting devices using TiOx electron transport layers and prism sheets. Organic Electronics, 2012, 13, 2667-2670.	1.4	4
153	A new model for optimization of organic light-emitting device by concurrent incorporation of electrical and optical simulations. Journal of Applied Physics, 2012, 112, .	1.1	4
154	Enhancements in device efficiency of poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester based solar cells with incorporation of bathocuproine. Thin Solid Films, 2012, 520, 5413-5416.	0.8	4
155	Charge storage characteristics of nonvolatile memories with chemically-synthesized and vacuum-deposited gold nanoparticles. Current Applied Physics, 2015, 15, 535-540.	1.1	4
156	Stoichiometry detuned silicon carbide as an orange and white light band solid-state phosphor. RSC Advances, 2016, 6, 7121-7128.	1.7	4
157	Investigating and optimizing charge transfer between graphene and metal by using double layer electrode and polymer-free transfer method. Materials Research Express, 2017, 4, 065602.	0.8	4
158	Ge-Rich SiGe Mode-Locker for Erbium-Doped Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-10.	1.9	4
159	Enhancement of Mobility and Modulation of Carrier Concentration in Graphene Fieldâ€Effect Transistors via Molecular Doping. Advanced Materials Interfaces, 2021, 8, 2100748.	1.9	4
160	Investigations of electron-injection mechanisms and interfacial chemical reactions of Bphen doped with rubidium carbonate in OLEDs. , 2008, , .		3
161	Interfacial Reactions and Doping in Organic Light Emitting Diodes Incorporated with Cesium-Based Compounds. Electrochemical and Solid-State Letters, 2010, 13, H203.	2.2	3
162	The origins in the transformation of ambipolar to n-type pentacene-based organic field-effect transistors. Organic Electronics, 2014, 15, 1759-1766.	1.4	3

#	Article	IF	Citations
163	The Effects of Fluorine-Contained Molecules on Improving the Polymer Solar Cell by Curing the Anomalous S-Shaped I–V Curve. ACS Applied Materials & Interfaces, 2015, 7, 6683-6689.	4.0	3
164	Surface modification of graphene using HBC-6ImBr in solution-processed OLEDs. Journal of Applied Physics, 2018, 123, .	1.1	3
165	Artificial Photosynthesis: Niâ€Nanocluster Modified Black TiO ₂ with Dual Active Sites for Selective Photocatalytic CO ₂ Reduction (Small 2/2018). Small, 2018, 14, 1870008.	5.2	3
166	Ultralow-contact-resistance graphene field-effect transistors fabricated with P-type solution doping. Applied Physics Express, 2018, 11, 075102.	1.1	3
167	Interlayer Charge Transfer Coupled with Acoustic Phonon in Organic/Inorganic van der Waals Stacked Heterostructures: Self-Assembled Pt(II) Complex on a PtSe ₂ Monolayer. Journal of Physical Chemistry C, 2020, 124, 25538-25546.	1.5	3
168	Low-temperature synthesis of high-quality graphene by controlling the carbon-hydrogen ratio of the precursor. Nano Express, 2022, 3, 015003.	1.2	3
169	Hybrid polarity and carrier injection of gold and gadolinium oxide bi-nanocrystals structure. Applied Physics Letters, 2013, 102, 083507.	1.5	2
170	Improved efficiency of organic light-emitting diodes with self-assembled molybdenum oxide hole injection layers. Journal of Applied Physics, 2017, 121, 195501.	1.1	2
171	Flexible Electronics: Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats (Adv. Mater. 11/2018). Advanced Materials, 2018, 30, 1870077.	11.1	2
172	11.4: Highly Efficient Blue Organic Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)Carbazole as the Host Material. Digest of Technical Papers SID International Symposium, 2006, 37, 139.	0.1	1
173	Organic Electronics: An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage (Adv. Funct. Mater. 3/2015). Advanced Functional Materials, 2015, 25, 342-342.	7.8	1
174	Data Retention Characterization of Gate-Injected Gold-Nanoparticle Non-Volatile Memory with Low-Damage CF4-Plasma-Treated Blocking Oxide Layer. Nanomaterials, 2017, 7, 385.	1.9	1
175	Van Der Waals Epitaxy: Ultrasensitive Photoresponsive Devices Based on Graphene/Bil3 van der Waals Epitaxial Heterostructures (Adv. Funct. Mater. 23/2018). Advanced Functional Materials, 2018, 28, 1870160.	7.8	1
176	The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells. Polymers, 2021, 13, 4020.	2.0	1
177	Stray Field and Combined Effects on Device Miniaturization of the Magnetic Tunnel Junctions. Journal Physics D: Applied Physics, 0, , .	1.3	1
178	Highly efficient blue phosphorescent OLEDs using large bandgap host materials., 2006, 6192, 301.		0
179	Interfacial physics in organic light emitting devices. Proceedings of SPIE, 2007, , .	0.8	0
180	Low-temperature electronic structures and intramolecular interaction of oligofluorenes studied by synchrotron photoemission spectroscopy. Applied Physics Letters, 2009, 95, 083302.	1.5	0

#	Article	IF	CITATIONS
181	Correlation of interfacial electronic structures and transport properties in organic light emitting diodes. Proceedings of SPIE, 2009, , .	0.8	0
182	Inverted OLEDs for flexible displays. Proceedings of SPIE, 2012, , .	0.8	0
183	Composition ratio dependent refractive index and optical bandgap of nonstoichiometric Si <inf>1−x</inf> Ge <inf>x</inf> on silicon. , 2015, , .		0
184	The Advanced Thin Film Micro LED Array. , 2019, , .		0
185	Giant Electroresistance Switching of Two-dimensional Ferroelectric α-ln2Se3 on p+-Si. , 2020, , .		0