
Sreekuttan M Unni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2587965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defect induced nitrogen reduction reaction of carbon nanomaterials. Sustainable Energy and Fuels, 2021, 5, 3765-3790.	4.9	9
2	Sulfonated poly(ether ether ketone) reinforced with polystyrene sulfonic acid functionalized micelle templated mesoporous MCM-41 for direct methanol fuel cells. International Journal of Hydrogen Energy, 2021, 46, 20640-20649.	7.1	7
3	Synergistic Dualâ€Atom Molecular Catalyst Derived from Lowâ€Temperature Pyrolyzed Heterobimetallic Macrocycleâ€N4 Corrole Complex for Oxygen Reduction. Small, 2021, 17, e2103823.	10.0	11
4	Functionalized Singleâ€Walled Carbon Nanohorns to Reinforce Sulfonated Poly(ether ether ketone) Electrolyte for Direct Methanol Fuel Cells. ChemElectroChem, 2020, 7, 3632-3636.	3.4	2
5	Unitized Regenerative Alkaline Microfluidic Cell Based on Platinum Group Metal-Free Electrode Materials. ACS Applied Energy Materials, 2020, 3, 7397-7403.	5.1	11
6	Graphene with Fe and S Coordinated Active Centers: An Active Competitor for the Fe–N–C Active Center for Oxygen Reduction Reaction in Acidic and Basic pH Conditions. ACS Applied Energy Materials, 2018, 1, 368-376.	5.1	36
7	A copper–trimesic acid metal–organic framework incorporated sulfonated poly(ether ether ketone) based polymer electrolyte membrane for direct methanol fuel cells. New Journal of Chemistry, 2018, 42, 16758-16765.	2.8	40
8	Direct synthesis of a carbon nanotube interpenetrated doped porous carbon alloy as a durable Pt-free electrocatalyst for the oxygen reduction reaction in an alkaline medium. Sustainable Energy and Fuels, 2017, 1, 1524-1532.	4.9	16
9	In situ grown nickel nanoparticles in a calixarene nanoreactor on a graphene–MoS ₂ support for efficient water electrolysis. Sustainable Energy and Fuels, 2017, 1, 1329-1338.	4.9	13
10	Nitrogenâ€Doped Graphene with a Threeâ€Dimensional Architecture Assisted by Carbon Nitride Tetrapods as an Efficient Metalâ€Free Electrocatalyst for Hydrogen Evolution. ChemElectroChem, 2017, 4, 2643-2652.	3.4	29
11	Valorization of coffee bean waste: a coffee bean waste derived multifunctional catalyst for photocatalytic hydrogen production and electrocatalytic oxygen reduction reactions. RSC Advances, 2016, 6, 82103-82111.	3.6	19
12	Nitrogen and sulphur co-doped crumbled graphene for the oxygen reduction reaction with improved activity and stability in acidic medium. Journal of Materials Chemistry A, 2016, 4, 6014-6020.	10.3	46
13	<i>In vitro</i> and <i>in silico</i> antifungal efficacy of nitrogen-doped carbon nanohorn (NCNH) against <i>Rhizoctonia solani</i> . Journal of Biomolecular Structure and Dynamics, 2016, 34, 152-162.	3.5	20
14	CoSe ₂ Supported on Nitrogenâ€Doped Carbon Nanohorns as a Methanolâ€Tolerant Cathode for Airâ€Breathing Microlaminar Flow Fuel Cells. ChemElectroChem, 2015, 2, 1339-1345.	3.4	35
15	Surface-modified single wall carbon nanohorn as an effective electrocatalyst for platinum-free fuel cell cathodes. Journal of Materials Chemistry A, 2015, 3, 4361-4367.	10.3	47
16	Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode. ACS Applied Materials & Interfaces, 2015, 7, 24256-24264.	8.0	67
17	Layer-separated MoS ₂ bearing reduced graphene oxide formed by an in situ intercalation-cum-anchoring route mediated by Co(OH) ₂ as a Pt-free electrocatalyst for oxygen reduction. Nanoscale, 2015, 7, 16729-16736.	5.6	36
18	Nitrogen-Induced Surface Area and Conductivity Modulation of Carbon Nanohorn and Its Function as an Efficient Metal-Free Oxygen Reduction Electrocatalyst for Anion-Exchange Membrane Fuel Cells. Small, 2015, 11, 352-360.	10.0	83

SREEKUTTAN M UNNI

#	Article	IF	CITATIONS
19	Twoâ€inâ€One: Inherent Anhydrous and Waterâ€Assisted High Proton Conduction in a 3D Metal–Organic Framework. Angewandte Chemie - International Edition, 2014, 53, 2638-2642.	13.8	367
20	Synthesis of an efficient heteroatom-doped carbon electro-catalyst for oxygen reduction reaction by pyrolysis of protein-rich pulse flour cooked with SiO2 nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 4251.	2.8	45
21	Layer-separated distribution of nitrogen doped graphene by wrapping on carbon nitride tetrapods for enhanced oxygen reduction reactions in acidic medium. Chemical Communications, 2014, 50, 13769-13772.	4.1	24
22	Redoxâ€Mediated Synthesis of Functionalised Graphene: A Strategy towards 2D Multifunctional Electrocatalysts for Energy Conversion Applications. ChemPlusChem, 2013, 78, 1296-1303.	2.8	6
23	1-Dimensional confinement of porous polyethylenedioxythiophene using carbon nanofibers as a solid template: an efficient charge storage material with improved capacitance retention and cycle stability. RSC Advances, 2013, 3, 11877.	3.6	25
24	3-Dimensionally self-assembled single crystalline platinum nanostructures on few-layer graphene as an efficient oxygen reduction electrocatalyst. RSC Advances, 2013, 3, 6913.	3.6	11
25	Hierarchically Nanoperforated Graphene as a High Performance Electrode Material for Ultracapacitors. Small, 2013, 9, 2801-2809.	10.0	33
26	Design of a High Performance Thin All-Solid-State Supercapacitor Mimicking the Active Interface of Its Liquid-State Counterpart. ACS Applied Materials & Interfaces, 2013, 5, 13397-13404.	8.0	53
27	A 3D Hexaporous Carbon Assembled from Single‣ayer Graphene as High Performance Supercapacitor. ChemSusChem, 2012, 5, 2159-2164.	6.8	72
28	Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction. Journal of Materials Chemistry, 2012, 22, 23506.	6.7	159
29	Disordered Brownmillerite Ba ₂ InCeO _{5+δ} with Enhanced Oxygen Reduction Activity. Chemistry of Materials, 2012, 24, 2823-2828.	6.7	25
30	Trigol based reduction of graphite oxide to graphene with enhanced charge storage activity. Journal of Materials Chemistry, 2012, 22, 11140.	6.7	33
31	Ex-situ dispersion of core–shell nanoparticles of Cu–Pt on an in situ modified carbon surface and their enhanced electrocatalytic activities. Chemical Communications, 2011, 47, 3951.	4.1	25
32	Pt–MoOx-carbon nanotube redox couple based electrocatalyst as a potential partner with polybenzimidazole membrane for high temperature Polymer Electrolyte Membrane Fuel Cell applications. Electrochimica Acta, 2010, 55, 2878-2887.	5.2	42
33	High Pt Utilization Electrodes for Polymer Electrolyte Membrane Fuel Cells by Dispersing Pt Particles Formed by a Preprecipitation Method on Carbon "Polished―with Polypyrrole. Journal of Physical Chemistry C, 2010, 114, 14654-14661.	3.1	58
34	Domain Size Manipulation of Perflouorinated Polymer Electrolytes by Sulfonic Acid-Functionalized MWCNTs To Enhance Fuel Cell Performance. Langmuir, 2009, 25, 8299-8305.	3.5	87
35	Carbon Nanofiber with Selectively Decorated Pt Both on Inner and Outer Walls as an Efficient Electrocatalyst for Fuel Cell Applications. Journal of Physical Chemistry C, 2009, 113, 17572-17578.	3.1	45