Mohtada Sadrzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2587924/publications.pdf

Version: 2024-02-01

156 papers 6,947 citations

45 h-index 78623 77 g-index

159 all docs

159 docs citations

times ranked

159

6506 citing authors

#	Article	IF	CITATIONS
1	Surface characterization of thin-film composite membranes using contact angle technique: Review of quantification strategies and applications. Advances in Colloid and Interface Science, 2022, 299, 102524.	7.0	63
2	Functionalized polyamide membranes yield suppression of biofilm and planktonic bacteria while retaining flux and selectivity. Separation and Purification Technology, 2022, 282, 119981.	3.9	8
3	Nanodiamond-decorated thin film composite membranes with antifouling and antibacterial properties. Desalination, 2022, 522, 115436.	4.0	31
4	A new approach toward modeling of mixedâ€gas sorption in glassy polymers based on metaheuristic algorithms. Journal of Polymer Science, 2022, 60, 1392-1406.	2.0	5
5	Poly (methyl methacrylate) grafted wheat straw for economical and eco-friendly treatment of oily wastewater. Cellulose, 2022, 29, 3351-3374.	2.4	7
6	Engineered graphene-based mixed matrix membranes to boost CO2 separation performance: Latest developments and future prospects. Renewable and Sustainable Energy Reviews, 2022, 160, 112294.	8.2	22
7	Thermocapillary patterning of non-Newtonian thin films. Physics of Fluids, 2022, 34, .	1.6	2
8	Loose nanofiltration membranes functionalized with in situ-synthesized metal organic framework for water treatment. Materials Today Chemistry, 2022, 24, 100909.	1.7	5
9	Synergistic effect of thermal dehydrating on the emerging contaminants removal via Electro-Fenton. Journal of Cleaner Production, 2022, 356, 131880.	4.6	12
10	Novel data-driven energy management of a hybrid photovoltaic-reverse osmosis desalination system using deep reinforcement learning. Applied Energy, 2022, 317, 119184.	5.1	11
11	Synthesis, Characterization, and Typical Application of Nitrogenâ€Doped MoS ₂ Nanosheets Based on Pulsed Laser Ablation in Liquid Nitrogen. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	1
12	The implications of 3 <scp>D</scp> â€printed membranes for water and wastewater treatment and resource recovery. Canadian Journal of Chemical Engineering, 2022, 100, 2309-2321.	0.9	11
13	Effects of Electro-Oxidation Process on Tight-Rock Wettability and Imbibition Oil Recovery. Energy & Emp; Fuels, 2022, 36, 6771-6784.	2.5	2
14	Smart harvesting and in-situ application of piezoelectricity in membrane filtration systems. Journal of Membrane Science, 2022, , 120819.	4.1	5
15	An ultrasonic-assisted rapid approach for sustainable fabrication of antibacterial and anti-biofouling membranes via metal-organic frameworks. Materials Today Chemistry, 2022, 26, 101044.	1.7	4
16	Prediction of surface charge properties on the basis of contact angle titration models. Materials Chemistry and Physics, 2021, 258, 123933.	2.0	15
17	Highly Efficient Antifouling Coating of Star-Shaped Block Copolymers with Variable Sizes of Hydrophobic Cores and Charge-Neutral Hydrophilic Arms. ACS Applied Polymer Materials, 2021, 3, 1116-1134.	2.0	6
18	Gravity assisted super high flux microfiltration polyamide-imide membranes for oil/water emulsion separation. Journal of Membrane Science, 2021, 621, 119019.	4.1	40

#	Article	IF	CITATIONS
19	Development of layer-by-layer assembled polyamide-imide membranes for oil sands produced water treatment. Scientific Reports, 2021, 11, 8098.	1.6	18
20	Two-layer modeling of thermally induced BÃ \otimes nard convection in thin liquid films: Volume of fluid approach vs thin-film model. AIP Advances, 2021, 11, 045317.	0.6	1
21	Green Electrospun Membranes Based on Chitosan/Amino-Functionalized Nanoclay Composite Fibers for Cationic Dye Removal: Synthesis and Kinetic Studies. ACS Omega, 2021, 6, 10816-10827.	1.6	24
22	An experimental and numerical study of droplet spreading and imbibition on microporous membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126191.	2.3	8
23	Development of a self-sustained model to predict the performance of direct contact membrane distillation. Separation and Purification Technology, 2021, 263, 118407.	3.9	17
24	Deep learning-based energy management of a hybrid photovoltaic-reverse osmosis-pressure retarded osmosis system. Applied Energy, 2021, 293, 116959.	5.1	23
25	Robust superhydrophilic and underwater superoleophobic membrane optimized by Cu doping modified metal-organic frameworks for oil-water separation and water purification. Journal of Membrane Science, 2021, 640, 119755.	4.1	64
26	Effective strategy for UV-mediated grafting of biocidal Ag-MOFs on polymeric membranes aimed at enhanced water ultrafiltration. Chemical Engineering Journal, 2021, 426, 130704.	6.6	37
27	Novel Lignin-Modified Forward Osmosis Membranes: Waste Materials for Wastewater Treatment. ACS Sustainable Chemistry and Engineering, 2021, 9, 15768-15779.	3.2	16
28	Micropatterned Thin-Film Composite Poly(piperazine-amide) Nanofiltration Membranes for Wastewater Treatment. ACS Applied Polymer Materials, 2021, 3, 6653-6665.	2.0	18
29	Removal of trace organic contaminants by melamine-tuned highly cross-linked polyamide TFC membranes. Chemosphere, 2020, 238, 124691.	4.2	25
30	Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. Journal of Membrane Science, 2020, 596, 117604.	4.1	138
31	Bio-inspired anchoring of amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) onto PES membrane using polydopamine for oily wastewater treatment. Science of the Total Environment, 2020, 711, 134951.	3.9	59
32	Study on antifouling behaviors of GO modified nanocomposite membranes through QCM-D and surface energetics analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588, 124332.	2.3	16
33	Fabrication of Highly Permeable and Thermally Stable Reverse Osmosis Thin Film Composite Polyamide Membranes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2916-2925.	4.0	44
34	Thermally stable core-shell star-shaped block copolymers for antifouling enhancement of water purification membranes. Journal of Membrane Science, 2020, 598, 117686.	4.1	22
35	Thermally stable thin film composite polymeric membranes for water treatment: A review. Journal of Cleaner Production, 2020, 250, 119447.	4.6	71
36	Graphene-based electro-conductive anti-fouling membranes for the treatment of oil sands produced water. Science of the Total Environment, 2020, 704, 135365.	3.9	34

#	Article	IF	CITATIONS
37	Development of underwater superoleophobic polyamide-imide (PAI) microfiltration membranes for oil/water emulsion separation. Separation and Purification Technology, 2020, 238, 116451.	3.9	53
38	In Situ Ag-MOF Growth on Pre-Grafted Zwitterions Imparts Outstanding Antifouling Properties to Forward Osmosis Membranes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36287-36300.	4.0	90
39	Industrial waste lignin as an antifouling coating for the treatment of oily wastewater: Creating wealth from waste. Journal of Cleaner Production, 2020, 256, 120304.	4.6	54
40	Modeling of Air-Gap Membrane Distillation and Comparative Study with Direct Contact Membrane Distillation. Industrial & Distillation and Comparative Study with Direct Contact Membrane Distillation.	1.8	33
41	Nanodiamond-Enabled Thin-Film Nanocomposite Polyamide Membranes for High-Temperature Water Treatment. ACS Applied Materials & Interfaces, 2020, 12, 53274-53285.	4.0	33
42	New insights into the prediction of adaptive wetting of a solid surface under a liquid medium. Applied Surface Science, 2020, 532, 147444.	3.1	9
43	Toward Sustainable Tackling of Biofouling Implications and Improved Performance of TFC FO Membranes Modified by Ag-MOF Nanorods. ACS Applied Materials & Emp; Interfaces, 2020, 12, 38285-38298.	4.0	80
44	Analysis of streaming potential flow and electroviscous effect in a shear-driven charged slit microchannel. Scientific Reports, 2020, 10, 18317.	1.6	15
45	Development of antifouling membranes using agro-industrial waste lignin for the treatment of Canada's oil sands produced water. Journal of Membrane Science, 2020, 611, 118326.	4.1	25
46	Improved antifouling and antibacterial properties of forward osmosis membranes through surface modification with zwitterions and silver-based metal organic frameworks. Journal of Membrane Science, 2020, 611, 118352.	4.1	80
47	Nickel-Based Metal–Organic Frameworks to Improve the CO ₂ /CH ₄ Separation Capability of Thin-Film Pebax Membranes. Industrial & Engineering Chemistry Research, 2020, 59, 12834-12844.	1.8	38
48	Unplugging Standalone Sand Control Screens with High-power Shock Waves: An Experimental Study. , 2020, , .		4
49	A numerical study for thermocapillary induced patterning of thin liquid films. Physics of Fluids, 2020, 32, 024106.	1.6	10
50	New Insights into the Role of the Surrounding Medium Temperature in the Under-Liquid Wetting of Solid Surfaces. Langmuir, 2020, 36, 8301-8310.	1.6	7
51	A Laboratory Workflow for Characterization of Scaling Deposits in Thermal Wells. Energies, 2020, 13, 3184.	1.6	1
52	Overview of membrane technology. , 2020, , 1-28.		23
53	Durability and Recoverability of Soft Lithographically Patterned Hydrogel Molds for the Formation of Phase Separation Membranes. Micromachines, 2020, 11, 108.	1.4	6
54	Development of nanocomposite membranes by biomimicking nanomaterials., 2020,, 219-236.		2

#	Article	IF	CITATIONS
55	Prospects of nanocomposite membranes for water treatment by osmotic-driven membrane processes., 2020,, 257-297.		3
56	Prospects of nanocomposite membranes for water treatment by membrane distillation. , 2020, , 299-320.		2
57	Osmotic dewatering accelerates inherent sluggish kinetics of electro-Fenton process: Toward sustainable removal of organic contaminants. Chemical Engineering Journal, 2020, 394, 125043.	6.6	17
58	Electrohydrodynamic Patterning of Polyethersulfone Membranes. Langmuir, 2019, 35, 12139-12149.	1.6	9
59	Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes for Water Treatment. Nanomaterials, 2019, 9, 1186.	1.9	43
60	New insights into the impact of nanoscale surface heterogeneity on the wettability of polymeric membranes. Journal of Membrane Science, 2019, 590, 117270.	4.1	46
61	Integrated Coagulation-Membrane Processes with Zero Liquid Discharge (ZLD) Configuration for the Treatment of Oil Sands Produced Water. Water (Switzerland), 2019, 11, 1348.	1.2	11
62	Investigating fouling at the pore-scale using a microfluidic membrane mimic filtration system. Scientific Reports, 2019, 9, 10587.	1.6	19
63	Superhydrophilic and underwater superoleophobic membranes - A review of synthesis methods. Progress in Polymer Science, 2019, 98, 101166.	11.8	243
64	Carbon-based polymer nanocomposite membranes for oily wastewater treatment. Npj Clean Water, 2019, 2, .	3.1	86
65	Preparation, characterization and fouling analysis of in-air hydrophilic/underwater oleophobic bio-inspired polydopamine coated PES membranes for oily wastewater treatment. Journal of Membrane Science, 2019, 582, 402-413.	4.1	86
66	Efficient treatment of oil sands produced water: Process integration using ion exchange regeneration wastewater as a chemical coagulant. Separation and Purification Technology, 2019, 221, 166-174.	3.9	22
67	Direct Micropatterning of Phase Separation Membranes Using Hydrogel Soft Lithography. Advanced Materials Technologies, 2019, 4, 1800384.	3.0	22
68	Novel nanocomposite polyethersulfone- antimony tin oxide membrane with enhanced thermal, electrical and antifouling properties. Polymer, 2019, 163, 48-56.	1.8	43
69	Development of a 3D-printed modified Scheludko-cell: Potential application for adsorption and thin liquid film study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 341-348.	2.3	2
70	Clay-based electrospun nanofibrous membranes for colored wastewater treatment. Applied Clay Science, 2019, 168, 77-86.	2.6	105
71	Substantially improved antifouling properties in electro-oxidative graphene laminate forward osmosis membrane. Chemical Engineering Research and Design, 2019, 141, 413-424.	2.7	36
72	Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles. Journal of Cleaner Production, 2018, 183, 1197-1206.	4.6	121

#	Article	IF	CITATIONS
73	Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes. Journal of Membrane Science, 2018, 549, 350-356.	4.1	135
74	Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Scientific Reports, 2018, 8, 784.	1.6	131
75	Development of advanced nanocomposite membranes using graphene nanoribbons and nanosheets for water treatment. Journal of Membrane Science, 2018, 560, 97-107.	4.1	105
76	Near wall void growth leads to disintegration of colloidal bacterial streamer. Journal of Colloid and Interface Science, 2018, 522, 249-255.	5.0	6
77	Portable Nanofiber-Light Addressable Potentiometric Sensor for Rapid <i>Escherichia coli</i> Detection in Orange Juice. ACS Sensors, 2018, 3, 815-822.	4.0	69
78	Parametric study on the stabilization of metal oxide nanoparticles in organic solvents: A case study with indium tin oxide (ITO) and heptane. Ultrasonics Sonochemistry, 2018, 40, 1003-1013.	3.8	12
79	Thermally stable polymers for advanced high-performance gas separation membranes. Progress in Energy and Combustion Science, 2018, 66, 1-41.	15.8	252
80	Microfluidic Membrane Filtration Systems to Study Biofouling. , 2018, , .		3
81	Thermally induced interfacial instabilities and pattern formation in confined liquid nanofilms. Physical Review E, 2018, 98, .	0.8	10
82	An Unpowered Sensor Node for Real-Time Water Quality Assessment (Humic Acid Detection). Electronics (Switzerland), 2018, 7, 231.	1.8	16
83	Microfluidic Mimic for Colloid Membrane Filtration: A Review. Journal of the Indian Institute of Science, 2018, 98, 137-157.	0.9	11
84	Treatment of oil sands produced water using combined electrocoagulation and chemical coagulation techniques. Science of the Total Environment, 2018, 645, 560-572.	3.9	79
85	Separation via Pervaporation Techniques Through Polymeric Membranes. , 2018, , 243-263.		14
86	Experimental Study on the Palatability Impacts of Potable Water as a Hydronic Medium. Water (Switzerland), 2018, 10, 218.	1.2	3
87	Microscopic Characterization of IBM Star Polymers at High-Temperature for Water Membrane Applications. Microscopy and Microanalysis, 2018, 24, 1080-1081.	0.2	1
88	Impact of bacterial streamers on biofouling of microfluidic filtration systems. Biomicrofluidics, 2018, 12, 044116.	1.2	11
89	Ordered high aspect ratio nanopillar formation based on electrical and thermal reflowing of prepatterned thin films. Journal of Colloid and Interface Science, 2018, 530, 312-320.	5.0	8
90	Fundamentals and Measurement Techniques for Gas Transport in Polymers., 2018,, 391-423.		19

#	Article	IF	Citations
91	Methods for the Preparation of Organic–Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cells. , 2017, , 311-325.		30
92	A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane. Journal of Membrane Science, 2017, 535, 248-257.	4.1	100
93	Abiotic streamers in a microfluidic system. Soft Matter, 2017, 13, 8698-8705.	1.2	14
94	Enhanced Electrically Induced Micropatterning of Confined Thin Liquid Films: Thermocapillary Role and Its Limitations. Industrial & Engineering Chemistry Research, 2017, 56, 10678-10688.	1.8	10
95	Aggregation and deposition of colloidal particles: Effect of surface properties of collector beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530, 46-52.	2.3	20
96	Characterization and Comparison of Dissolved Organic Matter Signatures in Steam-Assisted Gravity Drainage Process Water Samples from Athabasca Oil Sands. Energy & Energy & 2017, 31, 8363-8373.	2.5	23
97	Numerical Investigation of the Entropy Generation Due to Natural Convection in a Partially Heated Square Cavity Filled With Nanofluids. Heat Transfer Engineering, 2017, 38, 1506-1521.	1.2	7
98	Synthesis of thin film composite polyamide membranes: Effect of monohydric and polyhydric alcohol additives in aqueous solution. Journal of Membrane Science, 2017, 523, 336-345.	4.1	66
99	Dielectric behavior of oil–water emulsions during phase separation probed by electrical impedance spectroscopy. Sensors and Actuators B: Chemical, 2017, 243, 460-464.	4.0	17
100	Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport. Materials, 2017, 10, 1159.	1.3	15
101	Colloidal Fouling of Nanofiltration Membranes: Development of a Standard Operating Procedure. Membranes, 2017, 7, 4.	1.4	18
102	Nonlinear deformation and localized failure of bacterial streamers in creeping flows. Scientific Reports, 2016, 6, 32204.	1.6	18
103	Developing high throughput thin film composite polyamide membranes for forward osmosis treatment of SAGD produced water. Journal of Membrane Science, 2016, 511, 29-39.	4.1	64
104	Thermo-Electrohydrodynamic Patterning in Nanofilms. Langmuir, 2016, 32, 5776-5786.	1.6	19
105	A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes. Scientific Reports, 2016, 6, 22069.	1.6	267
106	Effect of intrinsic angular momentum in the capillary filling dynamics of viscous fluids. Journal of Colloid and Interface Science, 2016, 479, 80-86.	5.0	1
107	Thermally resistant and electrically conductive PES/ITO nanocomposite membrane. Journal of Membrane Science, 2016, 500, 151-160.	4.1	48
108	Analytical solution for transient electroosmotic flow in a rotating microchannel. RSC Advances, 2016, 6, 17632-17641.	1.7	29

#	Article	IF	Citations
109	Compact micro/nano electrohydrodynamic patterning: using a thin conductive film and a patterned template. Soft Matter, 2016, 12, 1074-1084.	1.2	17
110	Surface modification methods of organic solvent nanofiltration membranes. Chemical Engineering Journal, 2016, 289, 562-582.	6.6	146
111	Forward osmosis for treatment of oil sands produced water: systematic study of influential parameters. Desalination and Water Treatment, 2016, 57, 22980-22993.	1.0	15
112	Treatment of an <i>in situ</i> oil sands produced water by polymeric membranes. Desalination and Water Treatment, 2016, 57, 14869-14887.	1.0	51
113	Nanofiltration of oil sands boiler feed water: Effect of pH on water flux and organic and dissolved solid rejection. Separation and Purification Technology, 2015, 141, 339-353.	3.9	57
114	Electrohydrodynamic patterning of ultra-thin ionic liquid films. Soft Matter, 2015, 11, 2193-2202.	1.2	19
115	Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions. RSC Advances, 2015, 5, 54985-54997.	1.7	145
116	Colloidal fouling of nanofiltration membranes: A novel transient electrokinetic model and experimental study. Chemical Engineering Science, 2015, 138, 153-163.	1.9	22
117	Mathematical modeling of mass transfer in multicomponent gas mixture across the synthesized composite polymeric membrane. Journal of Industrial and Engineering Chemistry, 2013, 19, 870-885.	2.9	39
118	Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives. Journal of Membrane Science, 2013, 441, 31-44.	4.1	249
119	Surface grafting of FAU/EMT zeolite with (3-aminopropyl)methyldiethoxysilane optimized using Taguchi experimental design. Chemical Engineering Research and Design, 2012, 90, 1313-1321.	2.7	29
120	Characterization of Boiler Blowdown Water from Steam-Assisted Gravity Drainage and Silica–Organic Coprecipitation during Acidification and Ultrafiltration. Energy & Drainage amp; Fuels, 2012, 26, 5604-5612.	2.5	37
121	Effect of Operating Conditions on PV Performance of PVA Membranes: Experimental and Neural Network Modeling. Separation Science and Technology, 2012, 47, 1472-1484.	1.3	7
122	Improvement in gas separation properties of a polymeric membrane through the incorporation of inorganic nanoâ€particles. Polymers for Advanced Technologies, 2012, 23, 1101-1111.	1.6	21
123	Pure and mixed gas permeation through a composite polydimethylsiloxane membrane. Polymers for Advanced Technologies, 2011, 22, 586-597.	1.6	31
124	Modeling of unsteady-state permeation of gas mixture through a self-synthesized PDMS membranes. Separation and Purification Technology, 2011, 76, 385-399.	3.9	36
125	Preparation and characterization of a composite PDMS membrane on CA support. Polymers for Advanced Technologies, 2010, 21, 568-577.	1.6	34
126	C3H8 separation from CH4 and H2 using a synthesized PDMS membrane: Experimental and neural network modeling. Journal of Membrane Science, 2010, 346, 59-70.	4.1	46

#	Article	IF	CITATIONS
127	Synthesis and characterization of polyethersulfone membranes. Journal of Polymer Research, 2010, 17, 363-377.	1.2	69
128	Synthesis and gas permeation properties of a single layer PDMS membrane. Journal of Applied Polymer Science, 2010, 117, 33-48.	1.3	23
129	Prediction of ternary gas permeation through synthesized PDMS membranes by using Principal Component Analysis (PCA) and fuzzy logic (FL). Journal of Membrane Science, 2010, 360, 509-521.	4.1	17
130	Preparation and C3H8/Gas Separation Properties of a Synthesized Single Layer PDMS Membrane. Separation Science and Technology, 2010, 45, 592-603.	1.3	18
131	Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. Journal of Membrane Science, 2009, 326, 627-634.	4.1	176
132	Gas permeation through a synthesized composite PDMS/PES membrane. Journal of Membrane Science, 2009, 342, 236-250.	4.1	90
133	Ternary gas permeation through a synthesized PDMS membrane: Experimental and modeling. Journal of Membrane Science, 2009, 344, 225-236.	4.1	46
134	Coupling a mathematical and a fuzzy logic-based model for prediction of zinc ions separation from wastewater using electrodialysis. Chemical Engineering Journal, 2009, 151, 262-274.	6.6	32
135	Neural network modeling of Pb2+ removal from wastewater using electrodialysis. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1371-1381.	1.8	78
136	Treatment of sea water using electrodialysis: Current efficiency evaluation. Desalination, 2009, 249, 279-285.	4.0	114
137	Effect of operating parameters on pure and mixed gas permeation properties of a synthesized composite PDMS/PA membrane. Journal of Membrane Science, 2009, 342, 327-340.	4.1	79
138	CO2 and CH4 permeation through T-type zeolite membranes: Effect of synthesis parameters and feed pressure. Separation and Purification Technology, 2008, 61, 317-323.	3.9	64
139	Sea water desalination using electrodialysis. Desalination, 2008, 221, 440-447.	4.0	256
140	Separation of lead ions from wastewater using electrodialysis: Comparing mathematical and neural network modeling. Chemical Engineering Journal, 2008, 144, 431-441.	6.6	104
141	Effect of synthesis parameters on single gas permeation through T-type zeolite membranes. International Journal of Greenhouse Gas Control, 2008, 2, 531-538.	2.3	36
142	Separation of monovalent, divalent and trivalent ions from wastewater at various operating conditions using electrodialysis. Desalination, 2007, 205, 53-61.	4.0	40
143	Mathematical modeling of desalination by electrodialysis. Desalination, 2007, 206, 538-546.	4.0	48
144	Separation of different ions from wastewater at various operating conditions using electrodialysis. Separation and Purification Technology, 2007, 54, 147-156.	3.9	65

#	Article	IF	Citations
145	Effect of operating parameters on concentration of citric acid using electrodialysis. Journal of Food Engineering, 2007, 83, 596-604.	2.7	33
146	Microfiltration of oily wastewater using PP hydrophobic membrane. Desalination, 2006, 200, 319-321.	4.0	30
147	Modeling of metal ion removal from wastewater by electrodialysis. Separation and Purification Technology, 2005, 41, 73-82.	3.9	192
148	Mathematical modeling of flux decline in ultrafiltration. Desalination, 2005, 184, 367-375.	4.0	39
149	Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination, 2004, 167, 379-385.	4.0	159
150	Separation of copper ions by electrodialysis using Taguchi experimental design. Desalination, 2004, 169, 21-31.	4.0	106
151	Effect of Internal and External Concentration Polarizations on the Performance of Forward Osmosis Process. , 0, , .		6
152	Nanofiltration for the Treatment of Oil Sands-Produced Water. , 0, , .		2
153	Electrified Pressure-Driven Instability in Thin Liquid Films. , 0, , .		0
154	Degradation of pharmaceutical contaminants in water by an advanced plasma treatment., 0, 139, 202-221.		6
155	Fabrication of Joule Heating Coating Layers via Flame Spraying for Membrane Distillation. Surface Innovations, 0, , 1-16.	1.4	1
156	Elimination of pharmaceutical contaminants fluoxetine and propranolol by an advanced plasma water treatment., 0, 113, 346-353.		1