Diego GonzÃ;lez-Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2587644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti orrosive additives for alkaline electrolyte in Alâ€air batteries: NH ₄ VO ₃ and polyoxometalates. Electrochemical Science Advances, 2022, 2, e2100125.	2.8	6
2	Performance Improvement of Alkaline–Electrolyte Aluminum–Air Batteries by NH ₄ VO ₃ -Based Additives. Energy & Fuels, 2022, 36, 2851-2860.	5.1	4
3	Oxidative dissolution of synthetic vivianites as a method for the crystallization of molecular structural motifs. Structural Chemistry, 2021, 32, 445-455.	2.0	1
4	Spectroelectrochemical Experiment for Studying Water Oxidation with a Nickel Oxide Catalyst. Journal of Chemical Education, 2021, 98, 607-613.	2.3	4
5	Operando tracking of oxidation-state changes by coupling electrochemistry with time-resolved X-ray absorption spectroscopy demonstrated for water oxidation by a cobalt-based catalyst film. Analytical and Bioanalytical Chemistry, 2021, 413, 5395-5408.	3.7	16
6	Requirements for Beneficial Electrochemical Restructuring: A Model Study on a Cobalt Oxide in Selected Electrolytes. Advanced Energy Materials, 2021, 11, 2101737.	19.5	16
7	Exploring the Limits of Self-Repair in Cobalt Oxide Films for Electrocatalytic Water Oxidation. ACS Catalysis, 2020, 10, 7990-7999.	11.2	21
8	Structural and functional role of anions in electrochemical water oxidation probed by arsenate incorporation into cobalt-oxide materials. Physical Chemistry Chemical Physics, 2019, 21, 12485-12493.	2.8	18
9	H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. Journal of the American Chemical Society, 2019, 141, 2938-2948.	13.7	72
10	Nickel-iron catalysts for electrochemical water oxidation – redox synergism investigated by <i>in situ</i> X-ray spectroscopy with millisecond time resolution. Sustainable Energy and Fuels, 2018, 2, 1986-1994.	4.9	64
11	Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions. Energy and Environmental Science, 2018, 11, 2476-2485.	30.8	83
12	Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nature Communications, 2017, 8, 2022.	12.8	147
13	Electrosynthesis of Biomimetic Manganese–Calcium Oxides for Water Oxidation Catalysis—Atomic Structure and Functionality. ChemSusChem, 2016, 9, 379-387.	6.8	33
14	Water oxidation catalysis – role of redox and structural dynamics in biological photosynthesis and inorganic manganese oxides. Energy and Environmental Science, 2016, 9, 2433-2443.	30.8	99
15	Heterogeneous Water Oxidation: Surface Activity versus Amorphization Activation in Cobalt Phosphate Catalysts. Angewandte Chemie - International Edition, 2015, 54, 2472-2476.	13.8	152
16	High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity. ACS Catalysis, 2015, 5, 2017-2027.	11.2	249
17	Heterogeneous Water Oxidation: Surface Activity versus Amorphization Activation in Cobalt Phosphate Catalysts. Angewandte Chemie, 2015, 127, 2502-2506.	2.0	46
18	Screenâ€Printed Calcium–Birnessite Electrodes for Water Oxidation at Neutral pH and an "Electrochemical Harriman Series― ChemSusChem, 2014, 7, 3442-3451	6.8	61

DIEGO GONZÃILEZ-FLORES

#	Article	IF	CITATIONS
19	Water Oxidation by Amorphous Cobaltâ€Based Oxides: Volume Activity and Proton Transfer to Electrolyte Bases. ChemSusChem, 2014, 7, 1301-1310.	6.8	183
20	Synthesis of hafnium(IV) β-ketoiminates as potential precursors for the MOCVD of HfO2. Inorganica Chimica Acta, 2013, 396, 60-65.	2.4	3
21	Formic Acid: A Low-Cost, Mild, Ecofriendly, and Highly Efficient Catalyst for the Rapid Synthesis of l² -Enaminones. Synthetic Communications, 2013, 43, 2349-2364.	2.1	12
22	An Advanced Experiment for Studying Electron Transfer and Charge Storage on Surfaces Modified with Metallic Complexes. Journal of Chemical Education, 2013, 90, 1077-1081.	2.3	2
23	Electroactive copper(II) bimetallic self-assembled multilayers on Si(100). Surface Science, 2012, 606, 527-535.	1.9	4
24	Synthesis, Characterization and Crystal Structure of (Z)-3-(4-Chlorophenylamino)-1-Phenylbut-2-En-1-One. Journal of Chemical Crystallography, 2012, 42, 543-548.	1.1	2
25	Synthesis, Characterization and Crystal Structure of (2Z)-3-[(4-Methylphenyl)amino]-1-phenylbut-2-en-1-one. Journal of Chemical Crystallography, 2012, 42,	1.1	1