Javier Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2587278/publications.pdf

Version: 2024-02-01

567281 477307 1,968 31 15 29 citations h-index g-index papers 31 31 31 2719 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
2	Sep7 Is Essential to Modify Septin Ring Dynamics and Inhibit Cell Separation during <i>Candida albicans </i> Hyphal Growth. Molecular Biology of the Cell, 2008, 19, 1509-1518.	2.1	74
3	Morphogenesis beyond Cytokinetic Arrest in Saccharomyces cerevisiae. Journal of Cell Biology, 1998, 143, 1617-1634.	5.2	64
4	Polyphosphate is involved in cell cycle progression and genomic stability in <i>Saccharomyces cerevisiae</i> . Molecular Microbiology, 2016, 101, 367-380.	2.5	58
5	The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans. Journal of Cell Science, 2006, 119, 1130-1143.	2.0	57
6	The Stress-activated Protein Kinase Hog1 Mediates S Phase Delay in Response to Osmostress. Molecular Biology of the Cell, 2009, 20, 3572-3582.	2.1	57
7	Time-Dependent Quantitative Multicomponent Control of the G ₁ -S Network by the Stress-Activated Protein Kinase Hog1 upon Osmostress. Science Signaling, 2011, 4, ra63.	3.6	48
8	Hog1 Targets Whi5 and Msa1 Transcription Factors To Downregulate Cyclin Expression upon Stress. Molecular and Cellular Biology, 2015, 35, 1606-1618.	2.3	44
9	Improvement of biochemical methods of polyP quantification. Microbial Cell, 2017, 4, 6-15.	3.2	41
10	Polyphosphate: popping up from oblivion. Current Genetics, 2017, 63, 15-18.	1.7	38
11	Orchestrating the cell cycle in yeast: sequential localization of key mitotic regulators at the spindle pole and the bud neck. Microbiology (United Kingdom), 2002, 148, 2647-2659.	1.8	29
12	Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells. DNA Repair, 2017, 57, 171-178.	2.8	26
13	Dbf2 is essential for cytokinesis and correct mitotic spindle formation in <i>Candida albicans</i> Molecular Microbiology, 2009, 72, 1364-1378.	2.5	21
14	Phosphoregulation of the oncogenic protein regulator of cytokinesis 1 (PRC1) by the atypical CDK16/CCNY complex. Experimental and Molecular Medicine, 2019, 51, 1-17.	7.7	19
15	Polyphosphate degradation by Nudt3-Zn2+ mediates oxidative stress response. Cell Reports, 2021, 37, 110004.	6.4	18
16	Interaction Dynamics Determine Signaling and Output Pathway Responses. Cell Reports, 2017, 19, 136-149.	6.4	15
17	Role of the Septin Cdc10 in the Virulence of <i>Candida albicans</i> . Microbiology and Immunology, 2006, 50, 499-511.	1.4	13
18	Hog1 activation delays mitotic exit via phosphorylation of Net1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8924-8933.	7.1	11

#	Article	IF	CITATIONS
19	The atypical cyclin CNTD2 promotes colon cancer cell proliferation and migration. Scientific Reports, 2018, 8, 11797.	3.3	9
20	CDK-mediated Yku80 Phosphorylation Regulates the Balance Between Non-homologous End Joining (NHEJ) and Homologous Directed Recombination (HDR). Journal of Molecular Biology, 2020, 432, 166715.	4.2	9
21	Redundancy or specificity? The role of the CDK Pho85 in cell cycle control. International Journal of Biochemistry and Molecular Biology, 2013, 4, 140-9.	0.1	9
22	Defective in Mitotic Arrest 1 (Dma1) Ubiquitin Ligase Controls G1 Cyclin Degradation. Journal of Biological Chemistry, 2013, 288, 4704-4714.	3.4	6
23	Intertwined control of the cell cycle and nucleocytoplasmic transport by the cyclin-dependent kinase Pho85 and RanGTPase Gsp1 in Saccharomyces cerevisiae. Microbiological Research, 2018, 206, 168-176.	5.3	6
24	The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis. Cell Cycle, 2020, 19, 2105-2118.	2.6	6
25	Phosphate: from stardust to eukaryotic cell cycle control. International Microbiology, 2016, 19, 133-141.	2.4	5
26	The yin and yang of cyclin control by nutrients. Cell Cycle, 2013, 12, 865-866.	2.6	4
27	Comprehensive and quantitative analysis of G1 cyclins. A tool for studying the cell cycle. PLoS ONE, 2019, 14, e0218531.	2.5	4
28	A single-copy suppressor of the Saccharomyces cerevisae late-mitotic mutantscdc 15 and dbf2 is encoded by the Candida albicans CDC 14 gene. Yeast, 2001, 18, 849-858.	1.7	3
29	Protocol to quantify polyphosphate in human cell lines using a tagged PPBD peptide. STAR Protocols, 2022, 3, 101363.	1.2	2
30	The immune system and microorganisms: a love-hate relationship revisited. International Microbiology, 2003, 6, 3-4.	2.4	0
31	Covid-19, an opportunity to compare in-person and online teaching. Revista EspaÑola De EducaciÓn MÉdica, 2021, 2, 72-83.	0.1	0