Adrian S Woolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/258688/publications.pdf

Version: 2024-02-01

216 papers 9,825 citations

24978 57 h-index 48187 88 g-index

235 all docs

235 docs citations

times ranked

235

9042 citing authors

#	Article	IF	CITATIONS
1	Identification of the Gene for Oral-Facial-Digital Type I Syndrome. American Journal of Human Genetics, 2001, 68, 569-576.	2.6	308
2	Mutations in the Hepatocyte Nuclear Factor- \hat{l}^2 Gene Are Associated with Familial Hypoplastic Glomerulocystic Kidney Disease. American Journal of Human Genetics, 2001, 68, 219-224.	2.6	263
3	Medical versus surgical treatment in children with severe bilateral vesicoureteric reflux and bilateral nephropathy: a randomised trial. Lancet, The, 2001, 357, 1329-1333.	6.3	239
4	Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nature Genetics, 2003, 34, 203-208.	9.4	235
5	HNF1B Mutations Associate with Hypomagnesemia and Renal Magnesium Wasting. Journal of the American Society of Nephrology: JASN, 2009, 20, 1123-1131.	3.0	234
6	Disruption of ROBO2 Is Associated with Urinary Tract Anomalies and Confers Risk of Vesicoureteral Reflux. American Journal of Human Genetics, 2007, 80, 616-632.	2.6	189
7	Primary Vesicoureteric Reflux as a Predictor of Renal Damage in Children Hospitalized with Urinary Tract Infection: A Systematic Review and Meta-Analysis. Journal of the American Society of Nephrology: JASN, 2003, 14, 739-744.	3.0	181
8	Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kidney International, 2002, 61, 1231-1242.	2.6	163
9	Evolving Concepts in Human Renal Dysplasia. Journal of the American Society of Nephrology: JASN, 2004, 15, 998-1007.	3.0	159
10	Deregulation of cell survival in cystic and dysplastic renal development. Kidney International, 1996, 49, 135-146.	2.6	157
11	Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. Journal of Cell Science, 2011, 124, 600-612.	1.2	153
12	Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nature Genetics, 2005, 37, 520-525.	9.4	148
13	OFD1 Is a Centrosomal/Basal Body Protein Expressed during Mesenchymal-Epithelial Transition in Human Nephrogenesis. Journal of the American Society of Nephrology: JASN, 2004, 15, 2556-2568.	3.0	145
14	Podocyte-Specific Expression of Angiopoietin-2 Causes Proteinuria and Apoptosis of Glomerular Endothelia. Journal of the American Society of Nephrology: JASN, 2007, 18, 2320-2329.	3.0	143
15	Taxol inhibits progression of congenital polycystic kidney disease. Nature, 1994, 368, 750-753.	13.7	137
16	Peritubular Capillary Loss after Mouse Acute Nephrotoxicity Correlates with Down-Regulation of Vascular Endothelial Growth Factor-A and Hypoxia-Inducible Factor-1α. American Journal of Pathology, 2003, 163, 2289-2301.	1.9	135
17	Generation of Functioning Nephrons by Implanting Human Pluripotent Stem Cell-Derived Kidney Progenitors. Stem Cell Reports, 2018, 10, 766-779.	2.3	134
18	Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor- $1\hat{1}^2$ mutations. Kidney International, 2002, 61, 1243-1251.	2.6	133

#	Article	IF	CITATIONS
19	Primary, Nonsyndromic Vesicoureteric Reflux and Its Nephropathy Is Genetically Heterogeneous, with a Locus on Chromosome 1. American Journal of Human Genetics, 2000, 66, 1420-1425.	2.6	129
20	A paradoxical teratogenic mechanism for retinoic acid. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13668-13673.	3.3	125
21	De Novo Uroplakin IllaHeterozygous Mutations Cause Human Renal Adysplasia Leading to Severe Kidney Failure. Journal of the American Society of Nephrology: JASN, 2005, 16, 2141-2149.	3.0	117
22	Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Human Molecular Genetics, 2009, 18, 289-303.	1.4	116
23	Creation of a functioning chimeric mammalian kidney. Kidney International, 1990, 38, 991-997.	2.6	110
24	Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development (Cambridge), 2008, 135, 3301-3310.	1.2	110
25	Hepatocyte Nuclear Factor-1β. Journal of the American Society of Nephrology: JASN, 2001, 12, 2175-2180.	3.0	110
26	The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Human Molecular Genetics, 2010, 19, 4663-4676.	1.4	109
27	Renal tract malformations: perspectives for nephrologists. Nature Clinical Practice Nephrology, 2008, 4, 312-325.	2.0	108
28	KAL, a gene mutated in Kallmann's syndrome, is expressed in the first trimester of human development. Molecular and Cellular Endocrinology, 1995, 110, 73-79.	1.6	104
29	Roles of Angiopoietins in Kidney Development and Disease. Journal of the American Society of Nephrology: JASN, 2009, 20, 239-244.	3.0	101
30	Activation of the orphan endothelial receptor Tie1 modifies Tie2â€mediated intracellular signaling and cell survival. FASEB Journal, 2007, 21, 3171-3183.	0.2	97
31	The oral-facial-digital syndrome type 1 (OFD1), a cause of polycystic kidney disease and associated malformations, maps to Xp22.2-Xp22.3. Human Molecular Genetics, 1997, 6, 1163-1167.	1.4	92
32	A molecular and genetic view of human renal and urinary tract malformations. Kidney International, 2000, 58, 500-512.	2.6	92
33	OFD1, the Gene Mutated in Oral-Facial-Digital Syndrome Type 1, Is Expressed in the Metanephros and in Human Embryonic Renal Mesenchymal Cells. Journal of the American Society of Nephrology: JASN, 2003, 14, 680-689.	3.0	92
34	Maternal diet programs embryonic kidney gene expression. Physiological Genomics, 2005, 22, 48-56.	1.0	90
35	Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome. American Journal of Human Genetics, 2011, 89, 668-674.	2.6	89
36	Mutations in HPSE2 Cause Urofacial Syndrome. American Journal of Human Genetics, 2010, 86, 963-969.	2.6	88

3

#	Article	IF	CITATIONS
37	Targeted Glomerular Angiopoietin-1 Therapy for Early Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2014, 25, 33-42.	3.0	87
38	International multi-centre study of pregnancy outcomes with interleukin-1 inhibitors. Rheumatology, 2017, 56, 2102-2108.	0.9	84
39	ACTB Loss-of-Function Mutations Result in a Pleiotropic Developmental Disorder. American Journal of Human Genetics, 2017, 101, 1021-1033.	2.6	83
40	Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mammalian Genome, 2009, 20, 140-151.	1.0	82
41	Expression of Angiopoietin-1, Angiopoietin-2, and the Tie-2 Receptor Tyrosine Kinase during Mouse Kidney Maturation. Journal of the American Society of Nephrology: JASN, 1999, 10, 1722-1736.	3.0	81
42	Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development. American Journal of Human Genetics, 2015, 97, 291-301.	2.6	72
43	Oral-facial-digital syndrome type 1 is another dominant polycystic kidney disease: clinical, radiological and histopathological features of a new kindred. Nephrology Dialysis Transplantation, 1997, 12, 1354-1361.	0.4	70
44	Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli. Human Molecular Genetics, 2008, 17, 3953-3964.	1.4	70
45	Unilateral renal agenesis and the congenital solitary functioning kidney: developmental, genetic and clinical perspectives. BJU International, 2007, 99, 17-21.	1.3	69
46	TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nature Genetics, 2016, 48, 1359-1369.	9.4	69
47	Origin of Glomerular Capillaries: Is the Verdict In?. Nephron Experimental Nephrology, 1998, 6, 17-21.	2.4	68
48	Proliferation and Remodeling of the Peritubular Microcirculation after Nephron Reduction. American Journal of Pathology, 2001, 159, 547-560.	1.9	68
49	A molecular and genetic analysis of renalglomerular capillary development. Angiogenesis, 1997, 1, 84-101.	3.7	67
50	Congenital Obstructive Uropathy: Its Origin and Contribution to End-Stage Renal Disease in Children. Advances in Chronic Kidney Disease, 2001, 8, 157-163.	2.2	67
51	Angiopoietin-2 Is a Site-Specific Factor in Differentiation of Mouse Renal Vasculature. Journal of the American Society of Nephrology: JASN, 2000, 11, 1055-1066.	3.0	66
52	LRIG2 Mutations Cause Urofacial Syndrome. American Journal of Human Genetics, 2013, 92, 259-264.	2.6	63
53	Increased Renal Angiopoietin-1 Expression in Folic Acid-Induced Nephrotoxicity in Mice. Journal of the American Society of Nephrology: JASN, 2001, 12, 2721-2731.	3.0	63
54	Angiopoietin correlates with glomerular capillary loss in anti-glomerular basement membrane glomerulonephritis. Kidney International, 2002, 61, 2078-2089.	2.6	62

#	Article	IF	CITATIONS
55	Extracellular matrix protein expression during mouse detrusor development. Journal of Pediatric Surgery, 2003, 38, 1-12.	0.8	62
56	Expression of Hepatocyte Growth Factor/Scatter Factor and Its Receptor, MET, Suggests Roles in Human Embryonic Organogenesis. Pediatric Research, 1997, 41, 657-665.	1.1	61
57	Angiopoietin growth factors and Tie receptor tyrosine kinases in renal vascular development. Pediatric Nephrology, 2001, 16, 177-184.	0.9	59
58	Deregulation of Renal Transforming Growth Factor- \hat{l}^21 after Experimental Short-Term Ureteric Obstruction in Fetal Sheep. American Journal of Pathology, 2001, 159, 109-117.	1.9	58
59	Whole-Genome Linkage and Association Scan in Primary, Nonsyndromic Vesicoureteric Reflux. Journal of the American Society of Nephrology: JASN, 2010, 21, 113-123.	3.0	58
60	Angiopoietin-1 therapy enhances fibrosis and inflammation following folic acid-induced acute renal injury. Kidney International, 2008, 74, 300-309.	2.6	55
61	Effects of Oxygen on Vascular Patterning inTie1/LacZMetanephric Kidneysin Vitro. Biochemical and Biophysical Research Communications, 1998, 247, 361-366.	1.0	54
62	Potential Biological Role of Transforming Growth Factor- \hat{l}^21 in Human Congenital Kidney Malformations. American Journal of Pathology, 2000, 157, 1633-1647.	1.9	52
63	Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nature Communications, 2018, 9, 4800.	5.8	52
64	Galectin-3 Modulates Ureteric Bud Branching in Organ Culture of the Developing Mouse Kidney. Journal of the American Society of Nephrology: JASN, 2001, 12, 515-523.	3.0	52
65	Dysmorphogenesis of Kidney Cortical Peritubular Capillaries in Angiopoietin-2-Deficient Mice. American Journal of Pathology, 2004, 165, 1895-1906.	1.9	51
66	Measures of kidney function by minimally invasive techniques correlate with histological glomerular damage in SCID mice with adriamycin-induced nephropathy. Scientific Reports, 2015, 5, 13601.	1.6	51
67	Corticosteroid-induced kidney dysmorphogenesis is associated with deregulated expression of known cystogenic molecules, as well as indian hedgehog. American Journal of Physiology - Renal Physiology, 2010, 298, F346-F356.	1.3	50
68	Lack of major involvement of human uroplakin genes in vesicoureteral reflux: Implications for disease heterogeneity. Kidney International, 2004, 66, 10-19.	2.6	49
69	Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2016, 27, 69-77.	3.0	48
70	Molecular Mechanisms of Human Embryogenesis: Developmental Pathogenesis of Renal Tract Malformations. Pediatric and Developmental Pathology, 2002, 5, 108-129.	0.5	47
71	Rare Variants in BNC2 Are Implicated in Autosomal-Dominant Congenital Lower Urinary-Tract Obstruction. American Journal of Human Genetics, 2019, 104, 994-1006.	2.6	47
72	Expression and potential role of angiopoietins and Tie-2 in early development of the mouse metanephros. Developmental Dynamics, 2001, 222, 120-126.	0.8	46

#	Article	lF	Citations
73	Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease. ELife, $2019, 8, .$	2.8	46
74	Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development. Journal of Anatomy, 2007, 211, 620-629.	0.9	43
75	Urinary Outflow Obstruction Increases Apoptosis and Deregulates Bcl-2 and Bax Expression in the Fetal Ovine Bladder. American Journal of Pathology, 2003, 162, 1271-1282.	1.9	42
76	Cell Biology of Ureter Development. Journal of the American Society of Nephrology: JASN, 2013, 24, 19-25.	3.0	42
77	Proteinuria, hypertension and chronic renal failure in X-linked Kallmann's syndrome, a defined genetic cause of solitary functioning kidney. Nephrology Dialysis Transplantation, 1998, 13, 1998-2003.	0.4	41
78	ISL1 is a major susceptibility gene for classic bladder exstrophy and a regulator of urinary tract development. Scientific Reports, 2017, 7, 42170.	1.6	41
79	Hypertension and renin-angiotensin system blockers are not associated with expression of angiotensin-converting enzyme 2 (ACE2) in the kidney. European Heart Journal, 2020, 41, 4580-4588.	1.0	41
80	Vesicoureteric reflux: all in the genes?. Lancet, The, 1996, 348, 725-728.	6.3	40
81	Uncovering genetic mechanisms of kidney aging through transcriptomics, genomics, and epigenomics. Kidney International, 2019, 95, 624-635.	2.6	40
82	Circulating Angiopoietin-2 Is a Marker for Early Cardiovascular Disease in Children on Chronic Dialysis. PLoS ONE, 2013, 8, e56273.	1.1	39
83	Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization. Journal of the American Society of Nephrology: JASN, 2015, 26, 3021-3034.	3.0	39
84	HNF1B Mutations Are Associated With a Gitelman-like Tubulopathy That Develops During Childhood. Kidney International Reports, 2019, 4, 1304-1311.	0.4	39
85	Embryonic Gut Anomalies in a Mouse Model of Retinoic Acid-Induced Caudal Regression Syndrome. American Journal of Pathology, 2001, 159, 2321-2329.	1.9	38
86	The P2X7 ATP receptor modulates renal cyst development in vitro. Biochemical and Biophysical Research Communications, 2004, 322, 434-439.	1.0	38
87	Coinheritance of COL4A5 and MYO1E mutations accentuate the severity of kidney disease. Pediatric Nephrology, 2015, 30, 1459-1465.	0.9	38
88	Renal cancer and malformations in relatives of patients with Bardetâ€Biedl syndrome. Nephrology Dialysis Transplantation, 2000, 15, 1977-1985.	0.4	37
89	Albuminuria is associated with too few glomeruli and too much testosterone. Kidney International, 2013, 83, 1118-1129.	2.6	37
90	Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney International, 2016, 90, 1274-1284.	2.6	37

#	Article	IF	Citations
91	Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney. Nature Genetics, 2021, 53, 630-637.	9.4	37
92	Galectin-3 Associates with the Primary Cilium and Modulates Cyst Growth in Congenital Polycystic Kidney Disease. American Journal of Pathology, 2006, 169, 1925-1938.	1.9	35
93	Ureter Myogenesis. Journal of the American Society of Nephrology: JASN, 2010, 21, 24-30.	3.0	35
94	Similar renal outcomes in children with ADPKD diagnosed by screening or presenting with symptoms. Pediatric Nephrology, 2010, 25, 2275-2282.	0.9	34
95	Vascular growth factors play critical roles in kidney glomeruli. Clinical Science, 2015, 129, 1225-1236.	1.8	34
96	Congenital Disorders of the Human Urinary Tract: Recent Insights From Genetic and Molecular Studies. Frontiers in Pediatrics, 2019, 7, 136.	0.9	33
97	P2X ₇ Receptors Are Expressed during Mouse Nephrogenesis and in Collecting Duct Cysts of the <i>cpk/cpk</i> Mouse. Nephron Experimental Nephrology, 2002, 10, 34-42.	2.4	31
98	Mutation analyses of Uroplakin II in children with renal tract malformations. Nephrology Dialysis Transplantation, 2006, 21, 3415-3421.	0.4	31
99	Renal malformations associated with mutations of developmental genes: messages from the clinic. Pediatric Nephrology, 2010, 25, 2247-2255.	0.9	31
100	Urinary Tract Effects of HPSE2 Mutations. Journal of the American Society of Nephrology: JASN, 2015, 26, 797-804.	3.0	31
101	Maldevelopment of the Human Kidney and Lower Urinary Tract. , 2003, , 377-393.		30
102	Uroplakins: New molecular players in the biology of urinary tract malformations. Kidney International, 2007, 71, 195-200.	2.6	30
103	Immunolocalization of Cystinosin, the Protein Defective in Cystinosis. Journal of the American Society of Nephrology: JASN, 2002, 13, 2046-2051.	3.0	29
104	Effects of In Utero Bladder Outflow Obstruction on Fetal Sheep Detrusor Contractility, Compliance and Innervation. Journal of Urology, 2002, 168, 1615-1620.	0.2	29
105	Implication of Wt1 in the Pathogenesis of Nephrogenic Failure in a Mouse Model of Retinoic Acid-Induced Caudal Regression Syndrome. American Journal of Pathology, 2005, 166, 1295-1307.	1.9	29
106	Pinpointing clinical diagnosis through whole exome sequencing to direct patient care: a case of Senior-Loken syndrome. Lancet, The, 2015, 385, 1916.	6.3	29
107	Analysis of TSHZ2 and TSHZ3 genes in congenital pelvi-ureteric junction obstruction. Nephrology Dialysis Transplantation, 2010, 25, 54-60.	0.4	28
108	Unilateral multicystic dysplastic kidney. Kidney International, 2006, 69, 190-193.	2.6	27

#	Article	IF	CITATIONS
109	Heparanase 2, mutated in urofacial syndrome, mediates peripheral neural development in Xenopus. Human Molecular Genetics, 2014, 23, 4302-4314.	1.4	27
110	Loss-of-function variants in myocardin cause congenital megabladder in humans and mice. Journal of Clinical Investigation, 2019, 129, 5374-5380.	3.9	27
111	Integration of New Embryonic Nephrons Into the Kidney. American Journal of Kidney Diseases, 1991, 17, 611-614.	2.1	26
112	Recent insights into kidney diseases associated with glomerular cysts. Pediatric Nephrology, 2002, 17, 229-235.	0.9	26
113	Renal Hypoplasia and Dysplasia: Starting to Put the Puzzle Together. Journal of the American Society of Nephrology: JASN, 2006, 17, 2647-2649.	3.0	26
114	Mutational analyses of UPIIIA, SHH, EFNB2, and HNF1 \hat{l}^2 in persistent cloaca and associated kidney malformations. Journal of Pediatric Urology, 2007, 3, 2-9.	0.6	26
115	Roles of growth factors in renal development. Current Opinion in Nephrology and Hypertension, 1997, 6, 10-14.	1.0	25
116	Multicystic dysplastic kidney and Kallmann's syndrome: a new association?. Nephrology Dialysis Transplantation, 2001, 16, 1170-1175.	0.4	25
117	Development of embryonic stem cells in recombinant kidneys. Organogenesis, 2012, 8, 125-136.	0.4	25
118	Functional molecules in mesothelialâ€toâ€mesenchymal transition revealed by transcriptome analyses. Journal of Pathology, 2018, 245, 491-501.	2.1	25
119	Lrig2 and Hpse2, mutated in urofacial syndrome, pattern nerves in the urinary bladder. Kidney International, 2019, 95, 1138-1152.	2.6	25
120	Microarray interrogation of human metanephric mesenchymal cells highlights potentially important molecules in vivo. Physiological Genomics, 2007, 28, 193-202.	1.0	24
121	Sprouty1 Haploinsufficiency Prevents Renal Agenesis in a Model of Fraser Syndrome. Journal of the American Society of Nephrology: JASN, 2012, 23, 1790-1796.	3.0	24
122	Severe hyperglycemia after renal transplantation in a pediatric patient with a mutation of the Hepatocyte Nuclear Factor- $1\hat{l}^2$ gene. American Journal of Kidney Diseases, 2002, 40, 1325-1330.	2.1	23
123	Urofacial syndrome: a genetic and congenital disease of aberrant urinary bladder innervation. Pediatric Nephrology, 2014, 29, 513-518.	0.9	22
124	SLC20A1 Is Involved in Urinary Tract and Urorectal Development. Frontiers in Cell and Developmental Biology, 2020, 8, 567.	1.8	22
125	Cytokeratin 15 Marks Basal Epithelia in Developing Ureters and Is Upregulated in a Subset of Urothelial Cell Carcinomas. PLoS ONE, 2013, 8, e81167.	1.1	22
126	Screen for genes regulated during early kidney morphogenesis. Genesis, 1999, 24, 273-283.	3.1	20

#	Article	IF	CITATIONS
127	Vascular endothelial growth factor stimulates embryonic urinary bladder development in organ culture. BJU International, 2006, 98, 217-225.	1.3	20
128	Growth factors in the pathogenesis of renovascular complications of diabetes mellitus. Journal of Hypertension, 1992, 10, S11-S16.	0.3	19
129	CONGENITAL URINARY BLADDER OUTLET OBSTRUCTION. Fetal and Maternal Medicine Review, 2010, 21, 55-73.	0.3	19
130	Vangl2, a planar cell polarity molecule, is implicated in irreversible and reversible kidney glomerular injury. Journal of Pathology, 2018, 246, 485-496.	2.1	19
131	Potassium conductances and proliferation in conditionally immortalized renal glomerular mesangial cells from the H-2Kb-tsA58 transgenic mouse. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1355, 191-203.	1.9	18
132	Angiopoietins: vascular growth factors looking for roles in glomeruli. Current Opinion in Nephrology and Hypertension, 2010, 19, 20-25.	1.0	18
133	Genetics of human congenital urinary bladder disease. Pediatric Nephrology, 2014, 29, 353-360.	0.9	18
134	Effects of in utero bladder outflow obstruction on fetal sheep detrusor contractility, compliance and innervation. Journal of Urology, 2002, 168, 1615-20.	0.2	18
135	TGF-beta1 Inhibits Growth and Branching Morphogenesis In Embryonic Mouse Submandibular and Sublingual Glands in Vitro. (Salivary glands/extracellular matrix/epithelium/mesenchyme/organ) Tj ETQq1 1 0.784	13 104.6 gBT	/O ve rlock 10
136	Renal FMD may not confer a familial hypertensive risk nor is it caused by ACTA2 mutations. Pediatric Nephrology, 2011, 26, 1857-1861.	0.9	17
137	Representing Kidney Development Using the Gene Ontology. PLoS ONE, 2014, 9, e99864.	1.1	17
138	Genome-wide linkage and association study implicates the 10q26 region as a major genetic contributor to primary nonsyndromic vesicoureteric reflux. Scientific Reports, 2017, 7, 14595.	1.6	17
139	Growing a new human kidney. Kidney International, 2019, 96, 871-882.	2.6	17
140	Systemic lupus erythematosus and primary cerebral lymphoma. Postgraduate Medical Journal, 1987, 63, 569-571.	0.9	16
141	Cell turnover in normal and abnormal kidney development. Nephrology Dialysis Transplantation, 2002, 17, 2-4.	0.4	16
142	Angiogenesis and autosomal dominant polycystic kidney disease. Pediatric Nephrology, 2013, 28, 1749-1755.	0.9	16
143	Inflammatory mediators in human renal dysplasia. Nephrology Dialysis Transplantation, 2000, 15, 173-183.	0.4	15
144	Autosomal dominant inheritance of non-syndromic renal hypoplasia and dysplasia: dramatic variation in clinical severity in a single kindred. Nephrology Dialysis Transplantation, 2006, 22, 259-263.	0.4	15

#	Article	IF	Citations
145	Kidney disease in hypomelanosis of Ito. Nephrology Dialysis Transplantation, 2001, 16, 1267-1269.	0.4	14
146	Vascular endothelial growth factor administration does not improve microvascular disease in the salt-dependent phase of post-angiotensin II hypertension. American Journal of Physiology - Renal Physiology, 2006, 291, F1248-F1254.	1.3	14
147	Unraveling the Genetic Landscape of Bladder Development in Mice. Journal of Urology, 2009, 181, 2366-2374.	0.2	14
148	Using stem and progenitor cells to recapitulate kidney development and restore renal function. Current Opinion in Organ Transplantation, 2014, 19, 140-144.	0.8	14
149	A characterization of the chloride conductance in mesangial cells from the H-2Kb-tsA58 transgenic mouse. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1269, 267-274.	1.9	13
150	Primary, Nonsyndromic Vesicoureteric Reflux and Nephropathy in Sibling Pairs: A United Kingdom Cohort for a DNA Bank. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 760-766.	2.2	13
151	The Life of the Human Kidney Before Birth: Its Secrets Unfold. Pediatric Research, 2001, 49, 8-10.	1.1	12
152	Vascular Endothelial Growth Factor Mediates Hypoxic Stimulated Embryonic Bladder Growth in Organ Culture. Journal of Urology, 2007, 177, 1552-1557.	0.2	12
153	Overactivity or blockade of transforming growth factor $\hat{\mathbf{e}}^2$ each generate a specific ureter malformation. Journal of Pathology, 2019, 249, 472-484.	2.1	12
154	22q11.2 duplications in a UK cohort with bladder exstrophy–epispadias complex. American Journal of Medical Genetics, Part A, 2019, 179, 404-409.	0.7	11
155	Prostatic involvement in Wegener's granulomatosis Postgraduate Medical Journal, 1987, 63, 53-54.	0.9	10
156	The effects of low dose intravenous 99-126 atrial natriuretic factor infusion in patients with chronic renal failure Postgraduate Medical Journal, 1989, 65, 362-366.	0.9	10
157	Of Rats and Men: The Need for More Convincing Clinical Studies on Progression of Renal Diseases. American Journal of Kidney Diseases, 1991, 17, 258-260.	2.1	10
158	Diabetes, genes, and kidney development. Kidney International, 2000, 57, 1202-1203.	2.6	10
159	Radiotelemetered urodynamics of obstructed ovine fetal bladders: correlations with ex vivo cystometry and renal histopathology. BJU International, 2007, 99, 1517-1522.	1.3	10
160	Perspectives on human perinatal renal tract disease. Seminars in Fetal and Neonatal Medicine, 2008, 13, 196-201.	1.1	9
161	Environmental influences on renal tract development: a focus on maternal diet and the glucocorticoid hypothesis. Klinische Padiatrie, 2011, 223, S10-S17.	0.2	9
162	A homozygous missense variant in <i>CHRM3</i> associated with familial urinary bladder disease. Clinical Genetics, 2019, 96, 515-520.	1.0	9

#	Article	IF	CITATIONS
163	Emerging roles of obstruction and mutations in renal malformations. Pediatric Nephrology, 1998, 12, 690-694.	0.9	8
164	Do kidney tubules serve an angiogenic soup?. Kidney International, 2004, 66, 862-863.	2.6	8
165	Ex Vivo Modeling of Chemical Synergy in Prenatal Kidney Cystogenesis. PLoS ONE, 2013, 8, e57797.	1.1	8
166	Dysfunctional bladder neurophysiology in urofacial syndrome Hpse2 mutant mice. Neurourology and Urodynamics, 2020, 39, 1930-1938.	0.8	8
167	Towards Modelling Genetic Kidney Diseases with Human Pluripotent Stem Cells. Nephron, 2021, 145, 285-296.	0.9	8
168	Formation of Mature Nephrons by Implantation of Human Pluripotent Stem Cell-Derived Progenitors into Mice. Methods in Molecular Biology, 2020, 2067, 309-322.	0.4	8
169	The term CAKUT has outlived its usefulness: the case for the prosecution. Pediatric Nephrology, 2022, 37, 2785-2791.	0.9	8
170	Plasma concentrations of atrial natriuretic peptide in hypothyroidism. BMJ: British Medical Journal, 1988, 296, 531-531.	2.4	7
171	Do glomerular hemodynamic adaptations influence the progression of human renal disease?. Pediatric Nephrology, 1991, 5, 88-93.	0.9	7
172	From gene discovery to new biological mechanisms: heparanases and congenital urinary bladder disease. Nephrology Dialysis Transplantation, 2016, 31, 534-540.	0.4	7
173	A questionnaire survey of radiological diagnosis and management of renal dysplasia in children. Journal of Nephrology, 2018, 31, 95-102.	0.9	7
174	Early B-cell Factor 3â€"Related Genetic Disease Can Mimic Urofacial Syndrome. Kidney International Reports, 2020, 5, 1823-1827.	0.4	7
175	The miR-199a/214 Cluster Controls Nephrogenesis and Vascularization in a Human Embryonic Stem Cell Model. Stem Cell Reports, 2021, 16, 134-148.	2.3	7
176	Experimental long-term diabetes mellitus alters the transcriptome and biomechanical properties of the rat urinary bladder. Scientific Reports, 2021, 11, 15529.	1.6	7
177	Heparanase 2 and Urofacial Syndrome, a Genetic Neuropathy. Advances in Experimental Medicine and Biology, 2020, 1221, 807-819.	0.8	7
178	Generation of mice with a conditional null <i>fraser syndrome 1 (<i>Fras1) allele. Genesis, 2012, 50, 892-898.</i></i>	0.8	6
179	Exogenous transforming growth factor- $\langle b \rangle \hat{l}^2 \langle b \rangle 1$ enhances smooth muscle differentiation in embryonic mouse jejunal explants. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 252-264.	1.3	6
180	Definition, diagnosis and clinical management of non-obstructive kidney dysplasia: a consensus statement by the ERKNet Working Group on Kidney Malformations. Nephrology Dialysis Transplantation, 2022, 37, 2351-2362.	0.4	6

#	Article	IF	Citations
181	Bridging the gap: functional healing of embryonic small intestineex vivo. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 178-182.	1.3	5
182	Ligase IV syndrome can present with microcephaly and radial ray anomalies similar to Fanconi anaemia plus fatal kidney malformations. European Journal of Medical Genetics, 2020, 63, 103974.	0.7	5
183	Aberrant Differentiation of Human Pluripotent Stem Cell-Derived Kidney Precursor Cells inside Mouse Vascularized Bioreactors. Nephron, 2020, 144, 509-524.	0.9	5
184	Molecular bases of human kidney malformations. Pediatric Nephrology, 1997, 11, 373-376.	0.9	4
185	Congential obstructive nephropathy gets complicated. Kidney International, 2003, 63, 761-763.	2.6	4
186	Organ Culture of Intact Metanephric Kidneys. , 2003, 86, 169-178.		4
187	From human pluripotent stem cells to functional kidney organoids and models of renal disease. Stem Cell Investigation, 2018, 5, 20-20.	1.3	4
188	Expanding the HPSE2 Genotypic Spectrum in Urofacial Syndrome, A Disease Featuring a Peripheral Neuropathy of the Urinary Bladder. Frontiers in Genetics, 0, 13, .	1.1	4
189	Development of Kidney Blood Vessels. , 2003, , 251-266.		3
190	Ca 2+ Regulation in Detrusor Smooth Muscle From Ovine Fetal Bladder After In Utero Bladder Outflow Obstruction. Journal of Urology, 2007, 177, 776-780.	0.2	3
191	Expression of Fraser syndrome genes in normal and polycystic murine kidneys. Pediatric Nephrology, 2012, 27, 991-998.	0.9	3
192	Envisioning treating genetically-defined urinary tract malformations with viral vector-mediated gene therapy. Journal of Pediatric Urology, 2021, 17, 610-620.	0.6	3
193	Molecular Mechanisms of Human Embryogenesis: Developmental Pathogenesis of Renal Tract Malformations. , 2002, 5, 108.		3
194	Perinatal renal disease. Seminars in Fetal and Neonatal Medicine, 2008, 13, 117.	1.1	2
195	GENES, URINARY TRACT DEVELOPMENT, AND HUMAN DISEASE. , 2010, , 172-179.		2
196	Effects of In Utero Bladder Outflow Obstruction on Fetal Sheep Detrusor Contractility, Compliance and Innervation. Journal of Urology, 2002, , 1615-1620.	0.2	2
197	Does atrial natriuretic factor contribute to the progression of renal disease?. Medical Hypotheses, 1990, 31, 261-263.	0.8	1
198	Genetically engineered kidneys. Pediatric Nephrology, 1993, 7, 605-608.	0.9	1

#	Article	IF	CITATIONS
199	Mutations in HPSE2 Cause Urofacial Syndrome. American Journal of Human Genetics, 2010, 87, 309.	2.6	1
200	Serum-Free Organ Culture of the Embryonic Mouse Ureter. Methods in Molecular Biology, 2019, 1926, 31-38.	0.4	1
201	Narrowing the chromosome 22q11.2 locus duplicated in bladder exstrophy–epispadias complex. Journal of Pediatric Urology, 2022, 18, 362.e1-362.e8.	0.6	1
202	Congenital Kidney Diseases. , 2003, , 487-492.		0
203	The single kidney. , 0, , 675-682.		0
204	RET gene mutations are not a common cause of congenital solitary functioning kidney in adults. CKJ: Clinical Kidney Journal, 2009, 2, 183-184.	1.4	0
205	Generation of mice with a conditional nullfraser syndrome 1(fras1) allele. Genesis, 2012, 50, 851-851.	0.8	0
206	FP802HNF1B MUTATIONS ARE ASSOCIATED WITH AN EVOLVING GITELMAN-LIKE TUBULOPATHY. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
207	TRANSLATING SIGNALS FROM GENOME-WIDE ASSOCIATION STUDIES INTO BIOLOGICAL MECHANISMS OF HYPERTENSION THROUGH KIDNEY -OMICS. Journal of Hypertension, 2019, 37, e215.	0.3	0
208	GENES ASSOCIATED WITH BLOOD PRESSURE TRAITS SHOW CELL TYPE-SPECIFIC EXPRESSION AND CONTROL MULTIPLE CAUSAL LINKS TO BLOOD PRESSURE REGULATION IN THE HUMAN KIDNEY. Journal of Hypertension, 2021, 39, e6.	0.3	0
209	Making human collecting ducts and modeling disease in the laboratory. Kidney International, 2021, 100, 263-265.	2.6	0
210	Nephrogenesis in health and disease. , 2022, , 3-15.		0
211	Molecular and genetic analyses of renal capillary development: Studying the angiopoietin/Tie axis. Kidney International, 2005, 68, 1968-1968.	2.6	0
212	Inherited renal disease., 2013,, 65-86.		0
213	HPSE2, LRIG2, and the Urofacial Syndrome. , 2016, , 1353-1356.		0
214	Building Human Renal Tracts. Journal of Pediatric Surgery, 2021, , .	0.8	0
215	Haploinsufficiency of the mouse <i>Tshz3</i> gene leads to kidney defects. Human Molecular Genetics, 2022, 31, 1921-1945.	1.4	0
216	MO374: Urinary Cell Transcriptomics Provides a Non-Invasive Readout of Kidney Genes Essential to Renal Health and Disease. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0