Christine T Griffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2586086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behavioral ecology of entomopathogenic nematodes. Biological Control, 2006, 38, 66-79.	3.0	264
2	Transmission Success of Entomopathogenic Nematodes Used in Pest Control. Insects, 2018, 9, 72.	2.2	75
3	Suppression of the large pine weevil Hylobius abietis (L.) (Coleoptera: Curculionidae) in pine stumps by entomopathogenic nematodes with different foraging strategies. Biological Control, 2006, 38, 217-226.	3.0	56
4	Morphological and molecular characterisation of Steinernema hermaphroditum n. sp. (Nematoda:) Tj ETQq0 0 0 with other members of the genus. Nematology, 2004, 6, 401-412.	rgBT /Ove 0.6	erlock 10 Tf 50 51
5	lsolation of insect pathogenic bacteria, <i>Providencia rettgeri</i> , from <i>Heterorhabditis</i> spp Journal of Applied Bacteriology, 1995, 78, 237-244.	1.1	49
6	Characterization of endospore-forming bacteria associated with entomopathogenic nematodes, Heterorhabditis spp., and description of Paenibacillus nematophilus sp. nov International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 435-441.	1.7	44
7	A Genetic Survey of Fluoxetine Action on Synaptic Transmission in <i>Caenorhabditis elegans</i> . Genetics, 2010, 186, 929-941.	2.9	41
8	Control of a major pest of forestry, Hylobius abietis, with entomopathogenic nematodes and fungi using eradicant and prophylactic strategies. Forest Ecology and Management, 2013, 305, 212-222.	3.2	41
9	Tests of Antarctic soils for insect parasitic nematodes. Antarctic Science, 1990, 2, 221-222.	0.9	40
10	Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: traits contributing to nematode fitness and biocontrol efficacy. Journal of Nematology, 2012, 44, 177-84.	0.9	40
11	Morphological characterisation of three isolates of Heterorhabditis Poinar, 1976 from the `Irish group' (Nematoda: Rhabditida: Heterorhabditidae) and additional evidence supporting their recognition as a distinct species, H. downesi n. sp Systematic Parasitology, 2002, 51, 95-106.	1.1	36
12	Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis. Journal of Invertebrate Pathology, 2005, 88, 40-48.	3.2	36
13	A survey of entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in the north-west of Iran. Nematology, 2009, 11, 107-116.	0.6	36
14	Dispersal Behaviour and Transmission Strategies of the Entomopathogenic Nematodes Heterorhabditis and Steinernema. Biocontrol Science and Technology, 1996, 6, 347-356.	1.3	35
15	Optimizing application of entomopathogenic nematodes to manage large pine weevil, Hylobius abietis L. (Coleoptera:Curculionidae) populations developing in pine stumps, Pinus sylvestris. Biological Control, 2007, 40, 253-263.	3.0	34
16	Cross-taxa congruence, indicators and environmental gradients in soils under agricultural and extensive land management. European Journal of Soil Biology, 2012, 49, 55-62.	3.2	32
17	Lethal Fighting in Nematodes Is Dependent on Developmental Pathway: Male-Male Fighting in the Entomopathogenic Nematode Steinernema longicaudum. PLoS ONE, 2014, 9, e89385.	2.5	31
18	Oosporein, an abundant metabolite in Beauveria caledonica, with a feedback induction mechanism and a role in insect virulence. Fungal Biology, 2019, 123, 601-610.	2.5	31

CHRISTINE T GRIFFIN

#	Article	IF	CITATIONS
19	Sex ratios and sex-biased infection behaviour in the entomopathogenic nematode genus Steinernema. International Journal for Parasitology, 2009, 39, 725-734.	3.1	29
20	Effect of salt and temperature stresses on survival and infectivity of Heterorhabditis spp. IJs. Nematology, 1999, 1, 69-78.	0.6	28
21	Description of a personality syndrome in a common and invasive ground beetle (Coleoptera:) Tj ETQq1 1 0.7843	14 _{.rg} BT /(Dverlock 10 T
22	Interference competition in entomopathogenic nematodes: male Steinernema kill members of their own and other species. International Journal for Parasitology, 2014, 44, 1009-1017.	3.1	27
23	An Entomopathogenic Nematode Extends Its Niche by Associating with Different Symbionts. Microbial Ecology, 2017, 73, 211-223.	2.8	27
24	The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, Galleria mellonella. Journal of Insect Physiology, 2017, 100, 82-92.	2.0	26
25	Activity and infectivity of four isolates of Heterorhabditis spp. Journal of Invertebrate Pathology, 1989, 53, 107-112.	3.2	25
26	Evict or infect? Managing populations of the large pine weevil, Hylobius abietis, using a bottom–up and top–down approach. Forest Ecology and Management, 2008, 255, 2634-2642.	3.2	25
27	Behaviour and Population Dynamics of Entomopathogenic Nematodes Following Application. , 2015, , 57-95.		22
28	Fatty acid composition of Heterorhabditis sp. during storage. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1999, 124, 81-88.	1.6	20
29	Molecular characterisation of Heterorhabditis indica isolates from India, Kenya, Indonesia and Cuba. Nematology, 2000, 2, 477-487.	0.6	19
30	Spontaneous and induced activity of Heterorhabditis megidis infective juveniles during storage. Nematology, 2004, 6, 911-917.	0.6	19
31	Efficacy of entomopathogenic nematodes for control of large pine weevil, Hylobius abietis: effects of soil type, pest density and spatial distribution. Journal of Pest Science, 2017, 90, 495-505.	3.7	18
32	Isolation and characterisation of Heterorhabditis spp. (Nematoda: Heterorhabditidae) from Hungary, Estonia and Denmark. Nematology, 1999, 1, 321-332.	0.6	17
33	Improved Control of Otiorhynchus sulcatus at 9°C by Cold-stored Heterorhabditis megidis UK211. Biocontrol Science and Technology, 2001, 11, 483-492.	1.3	17
34	Diversity of entomopathogenic nematodes (Nematoda: Steinernematidae, Heterorhabditidae) from Arasbaran forests and rangelands in north-west Iran. Nematology, 2010, 12, 767-773.	0.6	17
35	Organic soils promote the efficacy of entomopathogenic nematodes, with different foraging strategies, in the control of a major forest pest: A meta-analysis of field trial data. Biological Control, 2013, 65, 357-364.	3.0	16
36	Infective juveniles of entomopathogenic nematodes (Steinernema and Heterorhabditis) secrete ascarosides and respond to interspecific dispersal signals. Journal of Invertebrate Pathology, 2019, 168, 107257.	3.2	16

CHRISTINE T GRIFFIN

#	Article	IF	CITATIONS
37	The Use of Isoelectric Focusing and Polyacrylamide Gel Electrophoresis of Soluble Proteins in the Taxonomy of the Genus Heterorhabditis (Nematoda: Heterorhabditidae). Nematologica, 1994, 40, 601-612.	0.2	15
38	Differential susceptibility of pine weevil, Hylobius abietis (Coleoptera: Curculionidae), larvae and pupae to entomopathogenic nematodes and death of adults infected as pupae. BioControl, 2015, 60, 537-546.	2.0	14
39	phenModel: A temperature-dependent phenology/voltinism model for a herbivorous insect incorporating facultative diapause and budburst. Ecological Modelling, 2020, 416, 108910.	2.5	13
40	Environmental safety of entomopathogenic nematodes – Effects on abundance, diversity and community structure of non-target beetles in a forest ecosystem. Biological Control, 2012, 63, 107-114.	3.0	12
41	Inundative pest control: How risky is it? A case study using entomopathogenic nematodes in a forest ecosystem. Forest Ecology and Management, 2016, 380, 242-251.	3.2	12
42	Efficacy of entomopathogenic fungi against large pine weevil, Hylobius abietis, and their additive effects when combined with entomopathogenic nematodes. Journal of Pest Science, 2018, 91, 1407-1419.	3.7	12
43	Pine weevils modulate defensive behaviour in response to parasites ofÂdiffering virulence. Animal Behaviour, 2010, 80, 283-288.	1.9	11
44	The impact of entomopathogenic nematodes on a non-target, service-providing longhorn beetle is limited by targeted application when controlling forestry pest Hylobius abietis. Biological Control, 2012, 62, 173-182.	3.0	11
45	The influence of organic matter content and media compaction on the dispersal of entomopathogenic nematodes with different foraging strategies. Parasitology, 2017, 144, 1956-1963.	1.5	11
46	Survival, starvation, and activity in Heterorhabditis megidis (Nematoda: Heterorhabditidae). Biological Control, 2006, 37, 82-88.	3.0	10
47	The effect of entomopathogenic fungal culture filtrate on the immune response and haemolymph proteome of the large pine weevil, Hylobius abietis. Insect Biochemistry and Molecular Biology, 2018, 101, 1-13.	2.7	10
48	Novel application of PhastSystem polyacrylamide gel electrophoresis using restriction fragment length polymorphism — internal transcribed spacer patterns of individuals for molecular identification of entomopathogenic nematodes. Electrophoresis, 1999, 20, 1266-1273.	2.4	9
49	Local host-dependent persistence of the entomopathogenic nematode Steinernema carpocapsae used to control the large pine weevil Hylobius abietis. BioControl, 2016, 61, 185-193.	2.0	9
50	Distribution of entomopathogenic nematodes in an Irish sand dune system. Nematology, 2005, 7, 259-266.	0.6	8
51	Female presence is required for male sexual maturity in the nematode Steinernema longicaudum. Current Biology, 2008, 18, R997-R998.	3.9	8
52	Objective and subjective components of resource value in lethal fights between male entomopathogenic nematodes. Animal Behaviour, 2020, 164, 149-154.	1.9	8
53	Effect of Timber Condition on Parasitization of Pine Weevil (Hylobius abietis L.) Larvae by Entomopathogenic Nematodes under Laboratory Conditions. Biocontrol Science and Technology, 2002, 12, 225-233.	1.3	7
54	Optimizing the application method of entomopathogenic nematode suspension for biological control of large pine weevil Hylobius abietis. BioControl, 2017, 62, 659-667.	2.0	7

CHRISTINE T GRIFFIN

#	Article	IF	CITATIONS
55	The infectivity and behaviour of exsheathed and ensheathed Heterorhabditis megidis infective juveniles. Nematology, 2003, 5, 49-53.	0.6	6
56	The effect of temperature on hatch and activity of second-stage juveniles of the root-knot nematode, Meloidogyne minor, an emerging pest in north-west Europe. Nematology, 2011, 13, 985-993.	0.6	6
57	Conditioning the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis by pre-application storage improves efficacy against black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) at low and moderate temperatures. Biological Control, 2017, 108, 40-46.	3.0	6
58	Competition and Co-existence of Two Photorhabdus Symbionts with a Nematode Host. Microbial Ecology, 2021, 81, 223-239.	2.8	6
59	Correlation between survival in water and persistence of infectivity in soil of Heterorhabditis spp. isolates. Nematology, 2001, 3, 573-579.	0.6	5
60	Host activity and wasp experience affect parasitoid wasp foraging behaviour and oviposition on nematodeâ€infected larvae of the forestry pest Hylobius abietis. Ecological Entomology, 2012, 37, 269-282.	2.2	5
61	Stumpâ€harvesting for bioenergy probably has transient impacts on abundance, richness and community structure of beetle assemblages. Agricultural and Forest Entomology, 2017, 19, 388-399.	1.3	5
62	The effect of temperature conditioning (9°C and 20°C) on the proteome of entomopathogenic nematode infective juveniles. PLoS ONE, 2022, 17, e0266164.	2.5	4
63	Predatory soil nematodes (Nematoda: Mononchida) in major land-use types across Ireland. Journal of Natural History, 2009, 43, 2571-2577.	0.5	2
64	The diversity and composition of moth assemblages of protected and degraded raised bogs in Ireland. Insect Conservation and Diversity, 2016, 9, 302-319.	3.0	2
65	Application of hierarchical clustering to identify high risk pests to Sitka spruce: Ireland as a case study. Forestry, 2021, 94, 86-101.	2.3	1