Françoise Bachelerie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2585792/publications.pdf

Version: 2024-02-01

78 papers

9,689

39 h-index 76 76 g-index

84 all docs 84 docs citations

times ranked

84

11596 citing authors

#	Article	IF	CITATIONS
1	Case Report: Altered NK Cell Compartment and Reduced CXCR4 Chemotactic Response of B Lymphocytes in an Immunodeficient Patient With HPV-Related Disease. Frontiers in Immunology, 2022, 13, 799564.	2.2	O
2	The Chemokine System in Oncogenic Pathways Driven by Viruses: Perspectives for Cancer Immunotherapy. Cancers, 2022, 14, 848.	1.7	4
3	HPV infection alters vaginal microbiome through down-regulating host mucosal innate peptides used by Lactobacilli as amino acid sources. Nature Communications, 2022, 13, 1076.	5.8	38
4	Biallelic CXCR2 loss-of-function mutations define a distinct congenital neutropenia entity. Haematologica, 2022, 107, 765-769.	1.7	5
5	The CXCL12/CXCR4/ACKR3 Axis in the Tumor Microenvironment: Signaling, Crosstalk, and Therapeutic Targeting. Annual Review of Pharmacology and Toxicology, 2021, 61, 541-563.	4.2	29
6	The G Protein-Coupled Receptor Kinases (GRKs) in Chemokine Receptor-Mediated Immune Cell Migration: From Molecular Cues to Physiopathology. Cells, 2021, 10, 75.	1.8	12
7	CXCR4 signaling controls dendritic cell location and activation at steady state and in inflammation. Blood, 2021, 137, 2770-2784.	0.6	16
8	Multi-Tissue Characterization of GILZ Expression in Dendritic Cell Subsets at Steady State and in Inflammatory Contexts. Cells, 2021, 10, 3153.	1.8	0
9	The atypical chemokine receptor 3 interacts with Connexin 43 inhibiting astrocytic gap junctional intercellular communication. Nature Communications, 2020, 11, 4855.	5.8	21
10	Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors. Journal of Leukocyte Biology, 2020, 107, 1123-1135.	1.5	9
11	Identification by high-throughput sequencing of HPV variants and quasispecies that are untypeable by linear reverse blotting assay in cervical specimens. Papillomavirus Research (Amsterdam,) Tj ETQq1 1 0.784314 i	rgB 4.‡ Over	lock 10 Tf 50
12	A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity, 2019, 50, 390-402.e10.	6.6	258
13	Atypical Chemokine Receptor 3 (ACKR3): A Comprehensive Overview of its Expression and Potential Roles in the Immune System. Molecular Pharmacology, 2019, 96, 809-818.	1.0	41
14	A chemotaxis model to explain WHIM neutrophil accumulation in the bone marrow of WHIM mouse model. Blood Science, 2019, 1, 102-112.	0.4	0
15	Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity, 2018, 48, 364-379.e8.	6.6	450
16	OMIPâ€048 MC: Quantification of calcium sensors and channels expression in lymphocyte subsets by mass cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 681-684.	1.1	5
17	Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica, 2018, 103, 1278-1287.	1.7	129
18	Interaction of chemokine receptor CXCR4 in monomeric and dimeric state with its endogenous ligand CXCL12: coarse-grained simulations identify differences. Journal of Biomolecular Structure and Dynamics, 2017, 35, 399-412.	2.0	12

#	Article	IF	CITATIONS
19	Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nature Communications, 2017, 8, 14253.	5.8	33
20	Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization. Journal of Experimental Medicine, 2017, 214, 2023-2040.	4.2	36
21	CXCR4-Specific Nanobodies as Potential Therapeutics for WHIM syndrome. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 35-44.	1.3	26
22	Neutropenic Mice Provide Insight into the Role of Skin-Infiltrating Neutrophils in the Host Protective Immunity against Filarial Infective Larvae. PLoS Neglected Tropical Diseases, 2016, 10, e0004605.	1.3	39
23	Symptomatic Improvement in Human Papillomavirus-Induced Epithelial Neoplasia by Specific Targeting of the CXCR4 Chemokine Receptor. Journal of Investigative Dermatology, 2016, 136, 473-480.	0.3	16
24	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. Journal of Experimental Medicine, 2016, 213, 2293-2314.	4.2	108
25	Glucocorticoid-Induced Leucine Zipper Protein Controls Macropinocytosis in Dendritic Cells. Journal of Immunology, 2016, 197, 4247-4256.	0.4	16
26	Altered chemotactic response to CXCL12 in patients carrying <i>GATA2</i> hi> mutations. Journal of Leukocyte Biology, 2016, 99, 1065-1076.	1.5	32
27	The CXCL12/CXCR4 Signaling Pathway: A New Susceptibility Factor in Human Papillomavirus Pathogenesis. PLoS Pathogens, 2016, 12, e1006039.	2.1	34
28	A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate. Frontiers in Endocrinology, 2015, 6, 167.	1.5	56
29	An atypical addition to the chemokine receptor nomenclature: <scp>IUPHAR</scp> Review 15. British Journal of Pharmacology, 2015, 172, 3945-3949.	2.7	43
30	Chromothriptic Cure of WHIM Syndrome. Cell, 2015, 160, 686-699.	13.5	150
31	MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAPâ€ 7 0 signaling, and lymphocyte chemotaxis. FASEB Journal, 2015, 29, 4497-4511.	0.2	129
32	CXCR4 dysfunction in non-alcoholic steatohepatitis in mice and patients. Clinical Science, 2015, 128, 257-267.	1.8	27
33	GATA2, a new oncogene of sporadic and familial acute myeloid leukemias. Hematologie, 2014, 20, 153-160.	0.0	0
34	Glucocorticoid-Induced Leucine Zipper Enhanced Expression in Dendritic Cells Is Sufficient To Drive Regulatory T Cells Expansion In Vivo. Journal of Immunology, 2014, 193, 5863-5872.	0.4	39
35	International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors. Pharmacological Reviews, 2014, 66, 1-79.	7.1	735
36	New nomenclature for atypical chemokine receptors. Nature Immunology, 2014, 15, 207-208.	7.0	176

#	Article	IF	Citations
37	The relevance of the chemokine receptor ACKR3/CXCR7 on CXCL12-mediated effects in cancers with a focus on virus-related cancers. Cytokine and Growth Factor Reviews, 2014, 25, 307-316.	3.2	47
38	β-Arrestin–Dependent Activation of the Cofilin Pathway Is Required for the Scavenging Activity of the Atypical Chemokine Receptor D6. Science Signaling, 2013, 6, ra30.1-11, S1-3.	1.6	63
39	Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. Journal of Experimental Medicine, 2013, 210, 2321-2336.	4.2	190
40	High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood, 2013, 121, 822-829.	0.6	189
41	Tetralogy of Fallot is an Uncommon Manifestation of Warts, Hypogammaglobulinemia, Infections, and Myelokathexis Syndrome. Journal of Pediatrics, 2012, 161, 763-765.	0.9	37
42	Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet Journal of Rare Diseases, 2012, 7, 71.	1.2	96
43	The Chemokine CXCL12 Is Essential for the Clearance of the Filaria Litomosoides sigmodontis in Resistant Mice. PLoS ONE, 2012, 7, e34971.	1.1	17
44	Complementary methods provide evidence for the expression of <scp>CXCR</scp> 7 on human <scp>B</scp> cells. Proteomics, 2012, 12, 1938-1948.	1.3	33
45	Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood, 2012, 119, 5722-5730.	0.6	105
46	HPV-18 E2^E4 chimera: 2 new spliced transcripts and proteins induced by keratinocyte differentiation. Virology, 2012, 429, 47-56.	1.1	10
47	Direct assessment of CXCR4 mutant conformations reveals complex link between receptor structure and \widehat{Gl} ti activation Journal of Biological Chemistry, 2011, 286, 29440.	1.6	0
48	Two cases of disseminated Mycobacterium avium infection associated with a new immunodeficiency syndrome related to CXCR4 dysfunctions. Clinical Microbiology and Infection, 2011, 17, 135-139.	2.8	15
49	CXCL12/CXCR4-Axis Dysfunctions: Markers of the Rare Immunodeficiency Disorder WHIM Syndrome. Disease Markers, 2010, 29, 189-198.	0.6	40
50	A Pivotal Role for CXCL12 Signaling in HPV-Mediated Transformation of Keratinocytes: Clues toÂUnderstanding HPV-Pathogenesis in WHIM Syndrome. Cell Host and Microbe, 2010, 8, 523-533.	5.1	64
51	CXCL12/CXCR4-axis dysfunctions: Markers of the rare immunodeficiency disorder WHIM syndrome. Disease Markers, 2010, 29, 189-98.	0.6	24
52	CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood, 2009, 113, 6085-6093.	0.6	519
53	CXCR4 dimerization and β-arrestin–mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood, 2008, 112, 34-44.	0.6	147
54	Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. Journal of Clinical Investigation, 2008, 118, 1074-84.	3.9	111

#	Article	IF	Citations
55	Direct Assessment of CXCR4 Mutant Conformations Reveals Complex Link between Receptor Structure and Gαi Activation. Journal of Biological Chemistry, 2007, 282, 5111-5115.	1.6	39
56	CD4 Interacts Constitutively with Multiple CCR5 at the Plasma Membrane of Living Cells. Journal of Biological Chemistry, 2007, 282, 35163-35168.	1.6	45
57	CD4 and CCR5 Constitutively Interact at the Plasma Membrane of Living Cells. Journal of Biological Chemistry, 2006, 281, 37921-37929.	1.6	33
58	WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood, 2005, 105, 2449-2457.	0.6	268
59	The Chemokine SDF-1/CXCL12 Binds to and Signals through the Orphan Receptor RDC1 in T Lymphocytes. Journal of Biological Chemistry, 2005, 280, 35760-35766.	1.6	895
60	Mutation of the DRY Motif Reveals Different Structural Requirements for the CC Chemokine Receptor 5-Mediated Signaling and Receptor Endocytosis. Molecular Pharmacology, 2005, 67, 1966-1976.	1.0	88
61	The Effects of HIV-1 Nef on CD4 Surface Expression and Viral Infectivity in Lymphoid Cells Are Independent of Rafts. Journal of Biological Chemistry, 2004, 279, 31398-31408.	1.6	37
62	HIV-1 Entry into T-cells Is Not Dependent on CD4 and CCR5 Localization to Sphingolipid-enriched, Detergent-resistant, Raft Membrane Domains. Journal of Biological Chemistry, 2003, 278, 3153-3161.	1.6	95
63	Intra- and Intercellular Trafficking of the Foamy Virus Auxiliary Bet Protein. Journal of Virology, 2002, 76, 3388-3394.	1.5	34
64	Palmitoylation-dependent Control of Degradation, Life Span, and Membrane Expression of the CCR5 Receptor. Journal of Biological Chemistry, 2001, 276, 31936-31944.	1.6	126
65	Inducible NF-ÎB Activation Is Permitted by Simultaneous Degradation of Nuclear lÎBα. Journal of Biological Chemistry, 2000, 275, 15193-15199.	1.6	54
66	Inducible Degradation of \hat{l}^{Ω} by the Proteasome Requires Interaction with the F-box Protein h- \hat{l}^{Ω} TrCP. Journal of Biological Chemistry, 1999, 274, 7941-7945.	1.6	120
67	The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome. Chemistry and Biology, 1999, 6, 689-698.	6.2	133
68	Phosphorylation et ciblage au protéasome : la F-box connection Medecine/Sciences, 1999, 15, 1008.	0.0	1
69	Signal-mediated nuclear export of proteins and RNAs. Biology of the Cell, 1998, 90, 96-97.	0.7	0
70	Evidence for a Role of CRM1 in Signal-Mediated Nuclear Protein Export. Science, 1997, 278, 141-144.	6.0	693
71	The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996, 382, 833-835.	13.7	1,662
72	Absolute dependence on kappa B responsive elements for initiation and Tat-mediated amplification of HIV transcription in blood CD4 T lymphocytes EMBO Journal, 1995, 14, 1552-1560.	3.5	214

#	Article	IF	CITATIONS
73	Fate of the human immunodeficiency virus type 1 provirus in infected cells: a role for vpr. Journal of Virology, 1995, 69, 5883-5889.	1.5	101
74	Human cytomegalovirus infection induces transcription and secretion of transforming growth factor beta 1. Journal of Virology, 1994, 68, 5730-5737.	1.5	146
75	HIV enhancer activity perpetuated by NF-κB induction on infection of monocytes. Nature, 1991, 350, 709-712.	13.7	209
76	Stimulation of a human T-cell clone with anti-CD3 or tumor necrosis factor induces NF-kappa B translocation but not human immunodeficiency virus 1 enhancer-dependent transcription Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7861-7865.	3.3	108
77	Constitutive expression of human immunodeficiency virus (HIV) nef protein in human astrocytes does not influence basal or induced HIV long terminal repeat activity. Journal of Virology, 1990, 64, 3059-3062.	1.5	66
78	Transactivation of human immunodeficiency virus long terminal repeat during the early phases of human cytomegalovirus infection. Annales De L'Institut Pasteur Virology, 1987, 138, 461-470.	0.5	15