Do Youb Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2585577/publications.pdf

Version: 2024-02-01

257450 214800 2,244 65 24 47 h-index citations g-index papers 70 70 70 3761 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A 3D Porous Inverse Opal Ni Structure on a Cu Current Collector for Stable Lithiumâ€Metal Batteries. Batteries and Supercaps, 2022, 5, e202100257.	4.7	5
2	Three-dimensional SnO ₂ nanoparticles synthesized by joule heating as anode materials for lithium ion batteries. Nano Express, 2022, 3, 025005.	2.4	2
3	Sea-Urchin-like Hierarchical Carbon Spheres with Conical Pores as a Three-Dimensional Lithium Host for Dendrite Suppression. ACS Applied Energy Materials, 2022, 5, 5919-5927.	5.1	0
4	Nanoscale Wrinkled Cu as a Current Collector for High-Loading Graphite Anode in Solid-State Lithium Batteries. ACS Applied Materials & Diterfaces, 2021, 13, 2576-2583.	8.0	15
5	Mechanism for Preserving Volatile Nitrogen Dioxide and Sustainable Redox Mediation in the Nonaqueous Lithium–Oxygen Battery. ACS Applied Materials & Interfaces, 2021, 13, 8159-8168.	8.0	3
6	Fabrication of Highly Monodisperse and Small-Grain Platinum Hole–Cylinder Nanoparticles as a Cathode Catalyst for Li–O ₂ Batteries. ACS Applied Energy Materials, 2021, 4, 2514-2521.	5.1	3
7	Polyelemental Nanoparticles as Catalysts for a Li–O ₂ Battery. ACS Nano, 2021, 15, 4235-4244.	14.6	38
8	Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy, 2021, 82, 105736.	16.0	24
9	Stable cycling via absolute intercalation in graphite-based lithium-ion battery incorporated by solidified ether-based polymer electrolyte. Materials Advances, 2021, 2, 3898-3905.	5.4	4
10	Effect of Highly Periodic Au Nanopatterns on Dendrite Suppression in Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60978-60986.	8.0	14
11	In-situ electrochemical functionalization of carbon materials for high-performance Li–O2 batteries. Journal of Energy Chemistry, 2020, 48, 7-13.	12.9	8
12	Comparative electrochemical property of solvent-free ceramic/polymer hybrid electrolytes incorporating sol-gel prepared Li-phosphates, Li(Al,Ge)(PO4)3 and Li(Al,Ti)(PO4)3. Journal of Alloys and Compounds, 2020, 843, 155878.	5 . 5	3
13	Pt Nanoparticles-Macroporous Carbon Nanofiber Free-Standing Cathode for High-Performance Li-O ₂ Batteries. Journal of the Electrochemical Society, 2020, 167, 020549.	2.9	9
14	Understanding Reaction Pathways in High Dielectric Electrolytes Using β-Mo ₂ C as a Catalyst for Li–CO ₂ Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32633-32641.	8.0	22
15	Electrical modification of a composite electrode for room temperature operable polyethylene oxide-based lithium polymer batteries. Materials Research Express, 2020, 7, 075504.	1.6	0
16	Macroporous carbon nanofiber decorated with platinum nanorods as free-standing cathodes for high-performance Li–O2 batteries. Carbon, 2019, 154, 448-456.	10.3	10
17	Synthesis of Single-Crystalline Hexagonal Graphene Quantum Dots from Solution Chemistry. Nano Letters, 2019, 19, 5437-5442.	9.1	57
18	Electrostatically Assembled Silicon–Carbon Composites Employing Amine-Functionalized Carbon Intra-interconnections for Lithium-Ion Battery Anodes. ACS Applied Energy Materials, 2019, 2, 1868-1875.	5.1	6

#	Article	IF	CITATIONS
19	Formation of toroidal Li ₂ O ₂ in non-aqueous Li–O ₂ batteries with Mo ₂ CT _x MXene/CNT composite. RSC Advances, 2019, 9, 41120-41125.	3.6	16
20	Pt Nanorods-Decorated Macroporous Carbon Nanofiber Free-Standing Cathodes for High-Performance Li-O2 Battery. ECS Meeting Abstracts, 2019, , .	0.0	0
21	Carbon nanofiber@platinum by a coaxial electrospinning and their improved electrochemical performance as a Liâ^'O2 battery cathode. Carbon, 2018, 130, 94-104.	10.3	32
22	Improved electrochemical performance of ordered mesoporous carbon by incorporating macropores for Liâ€'O2 battery cathode. Carbon, 2018, 133, 118-126.	10.3	17
23	Autoxidation in amide-based electrolyte and its suppression for enhanced oxygen efficiency and cycle performance in non-aqueous lithium oxygen battery. Journal of Power Sources, 2017, 347, 186-192.	7.8	12
24	Facile Synthesis of Compositionâ€Controlled Grapheneâ€Supported PtPd Alloy Nanocatalysts and Their Applications in Methanol Electroâ€Oxidation and Lithiumâ€Oxygen Batteries. Chemistry - A European Journal, 2017, 23, 17136-17143.	3.3	15
25	High electrical conductivity and oxygen barrier property of polymer-stabilized graphene thin films. Carbon, 2017, 125, 492-499.	10.3	17
26	Highâ€Performance Lithiumâ€Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt. Advanced Science, 2017, 4, 1700235.	11,2	43
27	All-Solid-State Lithium Batteries Based on Semi-Interpenetrating Network Solid Polymer Electrolyte and Composite Electrode. ECS Meeting Abstracts, 2017, , .	0.0	0
28	Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries. Journal of Power Sources, 2016, 334, 154-161.	7.8	57
29	Size-controlled gold nano-tetradecapods with tunable optical and electromagnetic properties. Journal of Materials Chemistry C, 2016, 4, 3149-3156.	5.5	7
30	Graphene paper with controlled pore structure for high-performance cathodes in Li–O2 batteries. Carbon, 2016, 100, 265-272.	10.3	42
31	Facile synthesis of palladium nanodendrites supported on graphene nanoplatelets: an efficient catalyst for low overpotentials in lithium–oxygen batteries. Journal of Materials Chemistry A, 2016, 4, 578-586.	10.3	29
32	Free-Standing Graphene-Based Papers with Controlled Pore Structures for High-Performance Li-O2 Battery Cathodes. ECS Meeting Abstracts, 2016, , .	0.0	0
33	Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries. Carbon, 2015, 93, 625-635.	10.3	74
34	Enhanced energy and O ₂ evolution efficiency using an in situ electrochemically N-doped carbon electrode in non-aqueous Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 18843-18846.	10.3	17
35	Facile fabrication of highly flexible graphene paper for high-performance flexible lithium ion battery anode. RSC Advances, 2015, 5, 3299-3305.	3.6	31
36	Electrodeposited 3D porous silicon/copper films with excellent stability and high rate performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2478.	10.3	58

#	Article	IF	CITATIONS
37	Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation. Nanoscale, 2014, 6, 4182-4187.	5.6	39
38	Morphology control and temporal growth of a continuous silver shell on core–shell spheres. CrystEngComm, 2014, 16, 5142.	2.6	13
39	An electrochemically grown three-dimensional porous Si@Ni inverse opal structure for high-performance Li ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 6396-6401.	10.3	27
40	Shape- and size-controlled synthesis of noble metal nanoparticles. Advances in Materials Research (South Korea), 2014, 3, 199-216.	0.6	7
41	Au@Pd nanostructures with tunable morphologies and sizes and their enhanced electrocatalytic activity. CrystEngComm, 2013, 15, 7113.	2.6	30
42	Au@Pd core–shell nanocubes with finely-controlled sizes. CrystEngComm, 2013, 15, 3385.	2.6	29
43	Robust synthesis of gold rhombic dodecahedra with well-controlled sizes and their optical properties. CrystEngComm, 2013, 15, 252-258.	2.6	19
44	One-pot synthesis of gold trisoctahedra with high-index facets. Advances in Materials Research (South Korea), 2012, 1, 1-12.	0.6	4
45	Rýcktitelbild: Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles (Angew. Chem. 24/2011). Angewandte Chemie, 2011, 123, n/a-n/a.	2.0	0
46	Platinum Concave Nanocubes with Highâ€Index Facets and Their Enhanced Activity for Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2011, 50, 2773-2777.	13.8	414
47	Synthesis of Gold Nanoâ€hexapods with Controllable Arm Lengths and Their Tunable Optical Properties. Angewandte Chemie - International Edition, 2011, 50, 6328-6331.	13.8	84
48	Enhancement of Donor–Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 5519-5523.	13.8	334
49	Back Cover: Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles (Angew. Chem. Int. Ed. 24/2011). Angewandte Chemie - International Edition, 2011, 50, 5404-5404.	13.8	2
50	Seedâ€Mediated Synthesis of Gold Octahedra in High Purity and with Wellâ€Controlled Sizes and Optical Properties. Chemistry - A European Journal, 2011, 17, 4759-4764.	3.3	32
51	P-91 : AC Plasma Display Panel with Gold Nano-particles Inserted into an MgO Protective Layer. Digest of Technical Papers SID International Symposium, 2010, 41, 1588.	0.3	1
52	Influence of Gold Nanoparticles on the Characteristics of Plasma Display Panels. IEEE Transactions on Electron Devices, 2010, 57, 2644-2650.	3.0	13
53	Synthesis of Tetrahexahedral Gold Nanocrystals with High-Index Facets. Crystal Growth and Design, 2010, 10, 3321-3323.	3.0	58
54	Evolution of gold nanoparticles through Catalan, Archimedean, and Platonic solids. CrystEngComm, 2010, 12, 116-121.	2.6	48

#	Article	IF	CITATIONS
55	The characteristics of Li(CoxNi1 \hat{a}^{2} x)O2 cathode powders formed from the fine-sized Co3O4/NiO precursor powders. Journal of Alloys and Compounds, 2008, 450, 457-462.	5.5	4
56	LiMn2O4 Powders Prepared from Nano-Sized Manganese Oxide Powders. Journal of the Ceramic Society of Japan, 2007, 115, 241-244.	1.3	3
57	Effect of preparation temperature on the characteristics of PbO–B2O3–SiO2 glass powders with spherical shape. Journal of Alloys and Compounds, 2007, 428, 344-349.	5.5	20
58	The characteristics of $Li(Ni1/3Co1/3Mn1/3)O2$ particles prepared from precursor particles with spherical shape obtained by spray pyrolysis. Ceramics International, 2007, 33, 1093-1098.	4.8	2
59	Fine-sized LiCoO2 particles prepared by spray pyrolysis from polymeric precursor solution. Materials Research Bulletin, 2007, 42, 362-370.	5.2	11
60	LiMn2O4 particles prepared by spray pyrolysis from spray solution with citric acid and ethylene glycol. Journal of Materials Science, 2007, 42, 5369-5374.	3.7	10
61	Synthesis of nanosized Co3O4 particles by spray pyrolysis. Journal of Alloys and Compounds, 2006, 417, 254-258.	5.5	47
62	The characteristics of nano-sized manganese oxide particles prepared by spray pyrolysis. Journal of Alloys and Compounds, 2006, 425, 411-415.	5.5	16
63	Nano-sized ceria particles prepared by spray pyrolysis using polymeric precursor solution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 127, 99-104.	3.5	58
64	Submicron size Li(Ni1/3Co1/3Mn1/3)O2 particles prepared by spray pyrolysis from polymeric precursor solution. Journal of Materials Science: Materials in Electronics, 2006, 17, 353-359.	2.2	9
65	Morphology Control of Gd2O3:Eu Phosphor Particles with Cubic and Monoclinic Phases Prepared by High-Temperature Spray Pyrolysis. Japanese Journal of Applied Physics, 2006, 45, 5018-5022.	1.5	10