
Xionghui Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2585460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€ŧhroughput computational screening of porous polymer networks for natural gas sweetening based on a neural network. AICHE Journal, 2022, 68, e17433.	3.6	11
2	Advances in the Applications of Graphene-Based Nanocomposites in Clean Energy Materials. Crystals, 2021, 11, 47.	2.2	18
3	Carbon-Based Nanocomposites as Fenton-Like Catalysts in Wastewater Treatment Applications: A Review. Materials, 2021, 14, 2643.	2.9	17
4	lonic liquid screening for desulfurization of coke oven gas based on COSMO-SAC model and process simulation. Chemical Engineering Research and Design, 2021, 176, 146-161.	5.6	7
5	Decontamination of methylene Blue from simulated wastewater by the mesoporous rGO/Fe/Co nanohybrids: Artificial intelligence modeling and optimization. Materials Today Communications, 2020, 24, 100709.	1.9	18
6	Mesoporous Mn-Doped Fe Nanoparticle-Modified Reduced Graphene Oxide for Ethyl Violet Elimination: Modeling and Optimization Using Artificial Intelligence. Processes, 2020, 8, 488.	2.8	10
7	Performance of Several Cobalt–Amine Denitration Solutions and Their Catalytic Regeneration by Graphene. Environmental Science & Technology, 2019, 53, 11904-11912.	10.0	7
8	The regeneration of Fe-EDTA denitration solutions by nanoscale zero-valent iron. RSC Advances, 2019, 9, 132-138.	3.6	13
9	Use of cobalt(II) chelates of monothiol-containing ligands for the removal of nitric oxide. Journal of Hazardous Materials, 2019, 374, 50-57.	12.4	15
10	Absorption of Sulfur Dioxide by Tetraglyme–Sodium Salt Ionic Liquid. Molecules, 2019, 24, 436.	3.8	4
11	A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere, 2018, 200, 330-343.	8.2	170
12	Absorption of dilute sulfur dioxide in ethanediamine with ethylene glycol or polyethylene glycol 400 plus water system. Journal of Cleaner Production, 2018, 171, 506-511.	9.3	15
13	Solubility of sulfur dioxide in tetraglyme-NH ₄ SCN ionic liquid: high absorption efficiency. RSC Advances, 2018, 8, 42116-42122.	3.6	6
14	Modeling of Malachite Green Removal from Aqueous Solutions by Nanoscale Zerovalent Zinc Using Artificial Neural Network. Applied Sciences (Switzerland), 2018, 8, 3.	2.5	27
15	Artificial Intelligence Based Optimization for the Se(IV) Removal from Aqueous Solution by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron Composites. Materials, 2018, 11, 428.	2.9	16
16	Removal of Crystal Violet by Using Reduced-Graphene-Oxide-Supported Bimetallic Fe/Ni Nanoparticles (rGO/Fe/Ni): Application of Artificial Intelligence Modeling for the Optimization Process. Materials, 2018, 11, 865.	2.9	31
17	Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO. Scientific Reports, 2017, 7, 18040.	3.3	82
18	Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA). Nanomaterials, 2017, 7, 134.	4.1	44

XIONGHUI WEI

#	Article	IF	CITATIONS
19	Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites. Materials, 2017, 10, 544.	2.9	55
20	Optimizing Low-Concentration Mercury Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Fe3O4 Composites with the Aid of an Artificial Neural Network and Genetic Algorithm. Materials, 2017, 10, 1279.	2.9	25
21	Addendum: Shi, X.D.; Ruan, W.Q.; Hu, J.W.; Fan, M.Y.; Cao, R.S.; Wei, X.H. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA). Nanomaterials 2017, 7, 134. Nanomaterials. 2017. 7. 309.	4.1	2
22	Theoretical Studies on Structures, Properties and Dominant Debromination Pathways for Selected Polybrominated Diphenyl Ethers. International Journal of Molecular Sciences, 2016, 17, 927.	4.1	22
23	Synthesis and Characterization of Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites Used for Pb(II) Removal. Materials, 2016, 9, 687.	2.9	61
24	Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation. Environmental Science and Pollution Research, 2016, 23, 17880-17900.	5.3	87
25	Solubility and Spectral Investigation of Dilute SO2 in the Binary System Polyethylene Glycol 600 + Water and System's Density, Viscosity, and Surface Tension. Journal of Molecular Liquids, 2016, 223, 224-234.	4.9	9
26	Experimental solubility and absorption mechanism of dilute SO2 in aqueous diethylene glycol dimethyl ether solution. Korean Journal of Chemical Engineering, 2016, 33, 3493-3503.	2.7	4
27	Direct promotion effect of Fe on no reduction by activated carbon loaded with Fe species. Journal of Chemical Thermodynamics, 2016, 95, 216-230.	2.0	9
28	Highly efficient sulfur dioxide capture by glyme–lithium salt ionic liquids. RSC Advances, 2015, 5, 46564-46567.	3.6	12
29	Solubility Properties and Spectral Characterization of Dilute SO ₂ in Binary Mixtures of Urea + Ethylene Glycol. Journal of Chemical & Engineering Data, 2015, 60, 161-170.	1.9	9
30	Excess Properties and Spectral Investigation for the Binary System Diethylene Glycol Dimethyl Ether + Water at <i>T</i> = (293.15, 298.15, 303.15, 308.15, and 313.15) K. Journal of Chemical & Engineering Data, 2015, 60, 2-10.	1.9	14
31	Thermodynamic properties and spectral investigation of dilute sulfur dioxide in binary system N,N-dimethylformamide+diethylene glycol. Fluid Phase Equilibria, 2015, 389, 74-82.	2.5	3
32	Absorption, desorption and spectroscopic investigation of sulfur dioxide in the binary system ethylene glycol+dimethyl sulfoxide. Fluid Phase Equilibria, 2015, 405, 7-16.	2.5	20
33	Solubility properties and spectral characterization of sulfur dioxide in ethylene glycol derivatives. RSC Advances, 2015, 5, 8706-8712.	3.6	36
34	Density, viscosity and spectroscopic studies of the binary system of ethylene glycol+dimethyl sulfoxide at T=(298.15 to 323.15) K. Journal of Molecular Liquids, 2015, 207, 315-322.	4.9	73
35	Excited States and Photodebromination of Selected Polybrominated Diphenyl Ethers: Computational and Quantitative Structure—Property Relationship Studies. International Journal of Molecular Sciences, 2015, 16, 1160-1178.	4.1	10
36	Dehalogenation of persistent halogenated organic compounds: A review of computational studies and quantitative structure–property relationships. Chemosphere, 2015, 131, 17-33.	8.2	39

XIONGHUI WEI

#	Article	IF	CITATIONS
37	Solubility of dilute sulfur dioxide in binary mixtures of ethylene glycol and tetraethylene glycol dimethyl ether. Fluid Phase Equilibria, 2015, 394, 12-18.	2.5	8
38	Excess properties and spectral studies for binary system tri-ethylene glycol + dimethyl sulfoxide. Journal of Molecular Liquids, 2015, 212, 187-195.	4.9	27
39	Efficient SO ₂ Absorptions by Four Kinds of Deep Eutectic Solvents Based on Choline Chloride. Industrial & Engineering Chemistry Research, 2015, 54, 8019-8024.	3.7	136
40	Solubility for dilute sulfur dioxide, viscosities, excess properties, and viscous flow thermodynamics of binary system N,N-dimethylformamide+diethylene glycol. Fluid Phase Equilibria, 2014, 373, 89-99.	2.5	17
41	Desorption Property and Spectral Investigation of Dilute Sulfur Dioxide in Ethylene Glycol + N,N-Dimethylformamide System. Industrial & Engineering Chemistry Research, 2014, 53, 7871-7876.	3.7	5
42	Excess properties and spectroscopic studies for the binary system 1,2-ethanediamine+polyethylene glycol 300 at T=(293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K. Journal of Molecular Liquids, 2014, 198 21-29.	8, 4.9	30
43	Solubility of dilute SO2 in 1,4-dioxane, 15-crown-5 ether, polyethylene glycol 200, polyethylene glycol 300, and their binary mixtures at 308.15K and 122.66kPa. Fluid Phase Equilibria, 2013, 344, 65-70.	2.5	18
44	Electron-induced reductive debromination of 2,3,4-tribromodiphenyl ether: a computational study. Journal of Molecular Modeling, 2013, 19, 3333-3338.	1.8	15
45	Theoretical study on the radical anions and reductive dechlorination of selected polychlorinated dibenzo-p-dioxins. Chemosphere, 2013, 91, 765-770.	8.2	9
46	Solubility for dilute sulfur dioxide in binary mixtures of N,N-dimethylformamide+Ethylene Glycol at T=308.15K and p=122.66kPa. Journal of Chemical Thermodynamics, 2013, 62, 8-16.	2.0	41
47	Solubility and Henry's law constant of sulfur dioxide in aqueous polyethylene glycol 300 solution at different temperatures and pressures. Fluid Phase Equilibria, 2013, 348, 9-16.	2.5	19
48	Solubility of Dilute SO ₂ in Mixtures of <i>N</i> , <i>N</i> -Dimethylformamide + Polyethylene Glycol 400 and the Density and Viscosity of the Mixtures. Journal of Chemical & Engineering Data, 2013, 58, 639-647.	1.9	18
49	Photochemical fixation and reduction of sulfur dioxide to sulfide by tetraphenylporphyrin magnesium: Spectroscopic and kinetic studies. Science China Chemistry, 2012, 55, 1881-1886.	8.2	2
50	Binding of nucleosides with the cytotoxic plant alkaloid sanguinarine: Spectroscopic and thermodynamic studies. Science China Chemistry, 2012, 55, 1895-1902.	8.2	3
51	Excess molar volumes and viscosities of poly(ethylene glycol) 300+water at different temperatures. Fluid Phase Equilibria, 2012, 313, 7-10.	2.5	37
52	Densities and Viscosities for Binary Mixtures of Poly(ethylene glycol) 400 + Dimethyl Sulfoxide and Poly(ethylene glycol) 600 + Water at Different Temperatures. Journal of Chemical & Engineering Data, 2011, 56, 3083-3088.	1.9	63
53	Spectral Investigation of Intermolecular Hydrogen Bonding and Sâ^'O Interaction in Diethylene Glycol + H ₂ O + SO ₂ Systems. Industrial & Engineering Chemistry Research, 2011, 50, 674-679.	3.7	35
54	Absorption of dilute sulfur dioxide in aqueous poly-ethylene glycol 400 solutions at T=308.15K and p=122.60kPa. Journal of Chemical Thermodynamics, 2011, 43, 1463-1467.	2.0	21

#	Article	IF	CITATIONS
55	Spectral Studies of Hydrogen Bonding and Interaction in the Absorption Processes of Sulfur Dioxide in Poly(ethylene glycol) 400 + Water Binary System. Industrial & Engineering Chemistry Research, 2010, 49, 2025-2030.	3.7	79
56	Gasâ^'Liquid Equilibrium Data for the Mixture Gas of Sulfur Dioxide + Nitrogen with Poly(ethylene) Tj ETQq0 0 0 r 55, 959-961.	gBT /Over 1.9	lock 10 Tf 50 21
57	Solubility of Carbonyl Sulfide in Aqueous Solutions of Ethylene Glycol at Temperatures from (308.15 K) Tj ETQq1	1 0.7843 1.9	14 rgBT /Over
58	Density, Viscosity, and Excess Properties for 1,2-Diaminoethane + 1,2-Ethanediol at (298.15, 303.15, and) Tj ETQ	q0,00 rgE 1,90 rgE	BT /Qverlock I
59	Gasâ^'Liquid Equilibrium Data for Sulfur Dioxide + Nitrogen in Diethylene Glycol + Water at 298.15 K and 123.15 kPa. Journal of Chemical & Engineering Data, 2010, 55, 1446-1448.	1.9	17
60	Biological decomposition of Na2S2O3 into sulfur by a newly isolated facultative thermophilic alkaline desulphuricant strain. Science in China Series B: Chemistry, 2009, 52, 226-230.	0.8	0
61	Spectroscopic and Kinetic Studies of Photochemical Reaction of Magnesium Tetraphenylporphyrin with Oxygen. Journal of Physical Chemistry A, 2009, 113, 5367-5374.	2.5	31
62	Hydrogen Bonding and Interaction in the Absorption Processes of Sulfur Dioxide in Ethylene Glycol + Water Binary Desulfurization System. Industrial & Engineering Chemistry Research, 2009, 48, 1287-1291.	3.7	53
63	Isolation and identification of the thermophilic alkaline desulphuricant strain. Science in China Series B: Chemistry, 2008, 51, 158-165.	0.8	11
64	Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study. Science in China Series B: Chemistry, 2008, 51, 420-426.	0.8	88
65	Gasâ^'Liquid Equilibrium Data for a Mixture Gas of Sulfur Dioxide + Nitrogen with Ethylene Glycol Aqueous Solutions at 298.15 K and 123.15 kPa. Journal of Chemical & Engineering Data, 2008, 53, 2372-2374.	1.9	23
66	Density, Viscosity, and Excess Properties for Aqueous Poly(ethylene glycol) Solutions from (298.15 to) Tj ETQq0	0 0.rgBT /0	Overlock 10 1
67	Gasâ^'Liquid Equilibrium Data for the Mixture Gas of Sulfur Dioxide/Nitrogen with Ethylene Glycol at Temperatures from (298.15 to 313.15) K under Low Pressures. Journal of Chemical & Engineering Data, 2008, 53, 1479-1485.	1.9	41
68	A Spectral Study of the Interaction Between Chelerythrine Chloride and Adenosine. Spectroscopy Letters, 2007, 40, 615-626.	1.0	2
69	Molecular orbital studies on brominated diphenyl ethers. Part l—conformational properties. Chemosphere, 2005, 59, 1033-1041.	8.2	27
70	Molecular orbital studies on brominated diphenyl ethers. Part II—reactivity and quantitative structure–activity (property) relationships. Chemosphere, 2005, 59, 1043-1057.	8.2	36
71	Effective removal of arsenide from aqueous solutions using mesoporous CoFe2O4/graphene oxide nanocomposites assisted by artificial intelligence. Carbon Letters, 0, , 1.	5.9	6