List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/258509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy-Transfer Mechanisms and Emission Quantum Yields In Eu3+-Based Siloxane-Poly(oxyethylene) Nanohybrids. Chemistry of Materials, 2001, 13, 2991-2998.	3.2	178
2	Erbium-activated HfO2-based waveguides for photonics. Optical Materials, 2004, 25, 131-139.	1.7	116
3	Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5 μm application. Applied Physics Letters, 2002, 81, 28-30.	1.5	107
4	Low optical loss planar waveguides prepared in an organic–inorganic hybrid system. Applied Physics Letters, 2000, 77, 3502-3504.	1.5	104
5	Low wavenumber Raman scattering of nanoparticles and nanocomposite materials. Journal of Raman Spectroscopy, 2007, 38, 647-659.	1.2	73
6	Luminescence and non-radiative processes in lanthanide squarate hydrates. Journal of Physics and Chemistry of Solids, 1996, 57, 1727-1734.	1.9	68
7	Sol–gel-derived Er-activated SiO2–HfO2 planar waveguides for 1.5μm application. Journal of Non-Crystalline Solids, 2004, 345-346, 580-584.	1.5	56
8	Infrared-to-visible CW frequency upconversion in erbium activated silica–hafnia waveguides prepared by sol–gel route. Journal of Non-Crystalline Solids, 2003, 322, 306-310.	1.5	53
9	Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties. Journal of Materials Chemistry, 2005, 15, 3937.	6.7	52
10	Broadband NIR emission in novel sol–gel Er3+-doped SiO2–Nb2O5 glass ceramic planar waveguides for photonic applications. Optical Materials, 2013, 35, 387-396.	1.7	52
11	Active planar waveguides based on sol–gel Er3+-doped SiO2–ZrO2 for photonic applications: Morphological, structural and optical properties. Journal of Non-Crystalline Solids, 2008, 354, 4846-4851.	1.5	51
12	Structural and Spectroscopic Properties of Luminescent Er3+-Doped SiO2-Ta2O5 Nanocomposites. Journal of the American Ceramic Society, 2011, 94, 1230-1237.	1.9	45
13	Color tunability of intense upconversion emission from Er3+–Yb3+ co-doped SiO2–Ta2O5 glass ceramic planar waveguides. Journal of Materials Chemistry, 2012, 22, 9901.	6.7	45
14	Narrow Optical Homogeneous Linewidths in Rare Earth Doped Nanocrystals. Physical Review Letters, 2013, 111, 203601.	2.9	44
15	Titania-based organic–inorganic hybrid planar waveguides. Journal of Alloys and Compounds, 2002, 344, 221-225.	2.8	42
16	Erbium-Activated Silica-Titania Planar Waveguides. Journal of Sol-Gel Science and Technology, 2003, 26, 1033-1036.	1.1	41
17	Upconversion luminescence in Er3+ doped and Er3+/Yb3+ codoped zirconia and hafnia nanocrystals excited at 980 nm. Journal of Applied Physics, 2010, 107, .	1.1	41
18	Unusual broadening of the NIR luminescence of Er3+-doped Nb2O5 nanocrystals embedded in silica host: Preparation and their structural and spectroscopic study for photonics applications. Materials Chemistry and Physics, 2014, 147, 751-760.	2.0	37

#	Article	IF	CITATIONS
19	Nanostructured rare earth doped Nb 2 O 5 : Structural, optical properties and their correlation with photonic applications. Journal of Luminescence, 2016, 170, 707-717.	1.5	36
20	Sol-gel preparation of near-infrared broadband emitting Er3+-doped SiO2-Ta2O5 nanocomposite films. Thin Solid Films, 2010, 519, 1319-1324.	0.8	34
21	Generation of wide color gamut visible light in rare-earth triply doped tantalum oxide crystalline ceramic powders. Journal of Applied Physics, 2010, 107, .	1.1	34
22	Erbium-activated silica–zirconia planar waveguides prepared by sol–gel route. Thin Solid Films, 2008, 516, 3094-3097.	0.8	32
23	NIR luminescent Er3+/Yb3+ co-doped SiO2–ZrO2 nanostructured planar and channel waveguides: Optical and structural properties. Materials Chemistry and Physics, 2012, 136, 120-129.	2.0	32
24	High-Quantum-Yield Upconverting Er ³⁺ /Yb ³⁺ -Organic–Inorganic Hybrid Dual Coatings for Real-Time Temperature Sensing and Photothermal Conversion. Journal of Physical Chemistry C, 2020, 124, 19892-19903.	1.5	32
25	Broadband NIR Emission in Sol–Gel Er ³⁺ -Activated SiO ₂ –Ta ₂ O ₅ Glass Ceramic Planar and Channel Waveguides for Optical Application. Journal of Nanoscience and Nanotechnology, 2011. 11. 2540-2544.	0.9	31
26	Er3+-doped silica–hafnia films for optical waveguides and spherical resonators. Journal of Non-Crystalline Solids, 2009, 355, 1853-1860.	1.5	29
27	Color tunability in green, red and infra-red upconversion emission in Tm3+/Yb3+/Ho3+ co-doped CeO2 with potential application for improvement of efficiency in solar cells. Journal of Luminescence, 2015, 159, 223-228.	1.5	29
28	High niobium oxide content in germanate glasses: Thermal, structural, and optical properties. Journal of the American Ceramic Society, 2018, 101, 220-230.	1.9	29
29	Thermal and spectroscopic properties studies of Er3+-doped and Er3+/Yb3+-codoped niobium germanate glasses for optical applications. Journal of Luminescence, 2019, 205, 487-494.	1.5	29
30	1.5μm Emission and infrared-to-visible frequency upconversion in Er+3/Yb+3-doped phosphoniobate glasses. Journal of Non-Crystalline Solids, 2006, 352, 3636-3641.	1.5	28
31	Evaluation of local field effect on theI13â^•24lifetimes in Er-doped silica-hafnia planar waveguides. Physical Review B, 2007, 75, .	1.1	28
32	Surface modification of metals by calcium carbonate thin films on a layer-by-layer polyelectrolyte matrix. Thin Solid Films, 2008, 516, 3256-3262.	0.8	28
33	Spectroscopic assessment of silica–titania and silica–hafnia planar waveguides. Philosophical Magazine, 2004, 84, 1659-1666.	0.7	26
34	Er3+/Yb3+-activated silica–titania planar waveguides for EDPWAs fabricated by rf-sputtering. Journal of Non-Crystalline Solids, 2003, 322, 289-294.	1.5	25
35	Influence of defects on sub-Ã optical linewidths in Eu3+: Y2O3 particles. Journal of Luminescence, 2015, 168, 276-282.	1.5	25
36	Graphene oxide and titanium: synergistic effects on the biomineralization ability of osteoblast cultures. Journal of Materials Science: Materials in Medicine, 2016, 27, 71.	1.7	25

#	Article	IF	CITATIONS
37	Spectroscopic study of lanthanide squarate hydrates. Journal of Alloys and Compounds, 1994, 216, 61-66.	2.8	24
38	Near infrared emission and multicolor tunability of enhanced upconversion emission from Er 3+ –Yb 3+ co-doped Nb 2 O 5 nanocrystals embedded in silica-based nanocomposite and planar waveguides for photonics. Journal of Luminescence, 2016, 170, 431-443.	1.5	24
39	Yttrium tantalate containing high concentrations of Eu3+ as dopant: Synthesis and structural and luminescence features. Journal of Luminescence, 2018, 199, 143-153.	1.5	24
40	Er3+-doped niobium alkali germanate glasses and glass-ceramics: NIR and visible luminescence properties. Journal of Non-Crystalline Solids, 2019, 521, 119492.	1.5	23
41	Er3+/Yb3+ Co-Activated Silica-Alumina Monolithic Xerogels. Journal of Sol-Gel Science and Technology, 2003, 26, 943-946.	1.1	22
42	Sol–gel Eu3+/Tm3+ doped transparent glass–ceramic waveguides. Journal of Non-Crystalline Solids, 2004, 348, 180-184.	1.5	22
43	Rare-earth ion doped niobium germanate glasses and glass-ceramics for optical device applications. Journal of Luminescence, 2019, 213, 224-234.	1.5	22
44	Erbium- and ytterbium-doped sol–gel SiO2–HfO2 crack-free thick films onto silica on silicon substrate. Journal of Non-Crystalline Solids, 2006, 352, 3463-3468.	1.5	21
45	Visible and near-infrared luminescent Eu3+ or Er3+ doped laponite-derived xerogels and thick films: Structural and spectroscopic properties. Materials Chemistry and Physics, 2009, 113, 71-77.	2.0	20
46	Film based on Y2O3:Eu3+ (5mol% of Eu3+) for flat panel display. Thin Solid Films, 2012, 524, 299-303.	0.8	20
47	Structure and properties of Ti4+-ureasil organic-inorganic hybrids. Journal of the Brazilian Chemical Society, 2006, 17, 443-452.	0.6	19
48	Thermal, Structural, and Crystallization Properties of New Tantalum Alkaliâ€Germanate Glasses. Journal of the American Ceramic Society, 2015, 98, 2086-2093.	1.9	19
49	Multi and single walled carbon nanotubes: effects on cell responses and biomineralization of osteoblasts cultures. Journal of Materials Science: Materials in Medicine, 2016, 27, 62.	1.7	19
50	A Dual Ligand Sol–Gel Organic-Silica Hybrid Monolithic Capillary for In-Tube SPME-MS/MS to Determine Amino Acids in Plasma Samples. Molecules, 2019, 24, 1658.	1.7	19
51	Optical properties of ZrO2, SiO2 and TiO2-SiO2 xerogels and coatings doped with Eu3+ and Eu2+. Materials Research, 1999, 2, 11-15.	0.6	18
52	Structural and optical investigations of Eu 3+ -doped TiO 2 nanopowders. Ceramics International, 2016, 42, 6914-6923.	2.3	18
53	Broad and intense NIR luminescence from rare earth doped SiO2–Nb2O5 glass and glass ceramic prepared by a new sol gel route. Journal of Luminescence, 2016, 171, 63-71.	1.5	17
54	Eu3+-doped SiO2–Gd2O3 prepared by the sol–gel process: structural and optical properties. Journal of Sol-Gel Science and Technology, 2015, 76, 260-270.	1.1	16

#	Article	IF	CITATIONS
55	Distributed feedback multipeak laser emission in Rhodamine 6G doped organic-inorganic hybrids. Journal of Sol-Gel Science and Technology, 2006, 40, 359-363.	1.1	15
56	Filmes de titânio-silÃcio preparados por "spin" e "dip-coating". Quimica Nova, 2003, 26, 674-677.	0.3	14
57	Er ³⁺ doped phosphoniobate glasses and planar waveguides: structural and optical properties. Journal of Physics Condensed Matter, 2008, 20, 285224.	0.7	14
58	Rare Earth Doped SnO ₂ Nanoscaled Powders and Coatings: Enhanced Photoluminescence in Water and Waveguiding Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 2433-2439.	0.9	14
59	Structural and optical properties of Er3+ doped SiO2–Al2O3–GeO2 compounds prepared by a simple route. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 194, 21-26.	1.7	14
60	Spherical-shaped Y2O3:Eu3+ nanoparticles with intense photoluminescence emission. Ceramics International, 2015, 41, 1189-1195.	2.3	14
61	Cold white light emission in tellurite-zinc glasses doped with Er3+–Yb3+–Tm3+ under 980Ânm. Journal of Luminescence, 2020, 228, 117538.	1.5	14
62	Continuous wave near-infrared phonon-assisted upconversion in single Nd3+-doped yttria nanoparticles. Journal of Luminescence, 2017, 192, 963-968.	1.5	13
63	Broadband NIR emission from rare earth doped-SiO2-Nb2O5 and SiO2-Ta2O5 nanocomposites. Journal of Luminescence, 2018, 199, 138-142.	1.5	13
64	Photoluminescence properties of the material based on SiO2–Y2O3:Eu3+,Tb3+ under different in situ temperature prepared by the sol-gel process. Journal of Luminescence, 2020, 222, 117109.	1.5	13
65	Luminescence in Colorless, Transparent, Thermally Stable Thin Films of Eu3+ and Tb3+ β-diketonates in Hybrid Inorganic–Organic Zinc-based Sol–Gel Matrix. Journal of Fluorescence, 2010, 20, 739-743.	1.3	12
66	Single Er ³⁺ /Yb ³⁺ -Codoped Yttria Nanocrystals for Temperature Sensing: Experimental Characterization and Theoretical Modeling. Journal of Physical Chemistry C, 2021, 125, 14807-14817.	1.5	12
67	Novel Er-doped SiC/SiO2 nanocomposites: Synthesis via polymer pyrolysis and their optical characterization. Journal of the European Ceramic Society, 2005, 25, 277-281.	2.8	11
68	Synthesis and spectroscopic properties of luminescent tantalum(ν)-β-diketonate complexes and their use as optical sensors and the preparation of nanostructured Ta2O5. Dalton Transactions, 2015, 44, 3829-3836.	1.6	11
69	Thermal, structural and optical properties of new TeO2Sb2O3GeO2 ternary glasses. Optical Materials, 2016, 62, 95-103.	1.7	11
70	Luminescence and structural analysis of Ce ³⁺ and Er ³⁺ doped and Ce ³⁺ –Er ³⁺ codoped Ca ₃ Sc ₂ Si ₃ O ₁₂ garnets: influence of the doping concentration in the energy transfer processes. RSC Advances, 2016, 6, 15054-15061.	1.7	11
71	Luminescent Eu3+ doped Al6Ge2O13 crystalline compounds obtained by the sol gel process for photonics. Optical Materials, 2018, 75, 297-303.	1.7	11
72	In vitro assays and nanothermometry studies of infrared-to-visible upconversion of nanocrystalline Er3+,Yb3+ co-doped Y2O3 nanoparticles for theranostic applications. Physica B: Condensed Matter, 2022, 624, 413447.	1.3	11

#	Article	IF	CITATIONS
73	Primary thermometers based on sol–gel upconverting Er3+/Yb3+ co-doped yttrium tantalates with high upconversion quantum yield and emission color tunability. Journal of Sol-Gel Science and Technology, 2022, 102, 249-263.	1.1	11
74	Luminescent thermometry based on Er3+/Yb3+ co-doped yttrium niobate with high NIR emission and NIR-to-visible upconversion quantum yields. Journal of Luminescence, 2022, 248, 118986.	1.5	11
75	A Technique to Produce Thin Cucurbit[6]uril Films. Journal of Nanoscience and Nanotechnology, 2008, 8, 432-435.	0.9	10
76	Amorphous manganese polyphosphates: preparation, characterization and incorporation of azo dyes. Journal of Sol-Gel Science and Technology, 2009, 50, 158-163.	1.1	10
77	Alkali metal tantalum germanate glasses and glass-ceramics formation. Journal of Non-Crystalline Solids, 2018, 499, 401-407.	1.5	10
78	Refractive Indexes and Spectroscopic Properties to Design Er ³⁺ -Doped SiO ₂ –Ta ₂ O ₅ Films as Multifunctional Planar Waveguide Platforms for Optical Sensors and Amplifiers. ACS Omega, 2021, 6, 8784-8796.	1.6	10
79	Erbium-activated silica-titania planar waveguides prepared by rf-sputtering. , 2001, , .		9
80	Er3+-doped germanate glasses for active waveguides prepared by Ag+/K+↔Na+ ion-exchange. Journal of Non-Crystalline Solids, 2008, 354, 4743-4748.	1.5	9
81	Structural and optical study of glasses in the TeO2-GeO2-PbF2 ternary system. Journal of Non-Crystalline Solids, 2017, 463, 158-162.	1.5	9
82	High Eu ³⁺ concentration quenching in Y ₃ TaO ₇ solid solution for orange-reddish emission in photonics. RSC Advances, 2020, 10, 16917-16927.	1.7	9
83	Yb3+ influence on NIR emission from Pr3+-doped spherical yttria nanoparticles for advances in NIR I and NIR II biological windows. Journal of Luminescence, 2022, 241, 118485.	1.5	9
84	Sol-gel erbium-doped silica-hafnia planar and channel waveguides. , 2003, , .		8
85	Europium ion as a probe for binding sites to carrageenans. Journal of Luminescence, 2007, 127, 461-468.	1.5	8
86	Niobium oxide influence on the structural properties and NIR luminescence of Er3+/Yb3+ co-doped and single-doped 1â^'xSiO2âr'xNb2O5 nanocomposites prepared by an alternative sol–gel route. Journal of Luminescence, 2016, 180, 355-363.	1.5	8
87	The influence of Nb 2 O 5 crystallization on the infrared-to-visible upconversion in Er 3+ /Yb 3+ co-doped SiO 2 -Nb 2 O 5 nanocomposites. Journal of Luminescence, 2017, 188, 295-300.	1.5	8
88	Fluorescence Intensity Ratioâ€based temperature sensor with single Nd 3 + :Y 2 O 3 nanoparticles: Experiment and theoretical modeling. Nano Select, 2021, 2, 346-356.	1.9	8
89	Multicolor tunable and NIR broadband emission from rare-earth-codoped tantalum germanate glasses and nanostructured glass-ceramics. Journal of Luminescence, 2021, 239, 118357.	1.5	8
90	Eu3+ doped polyphosphate–aminosilane organic–inorganic hybrids. Journal of Alloys and Compounds, 2004, 374, 74-78.	2.8	7

4

#	Article	IF	CITATIONS
91	Preparation and characterization of erbium and ytterbium co-doped sol–gel SiO2:HfO2 films for planar waveguides. Optical Materials, 2007, 30, 600-607.	1.7	7
92	Platinum nanoparticles embedded in layer-by-layer films from SnO2/polyallylamine for ethanol electrooxidation. Journal of Power Sources, 2008, 185, 6-12.	4.0	7
93	Enhanced Eu ³⁺ Emission in Aqueous Phosphotungstate Colloidal Systems: Stabilization of Polyoxometalate Nanostructures. Langmuir, 2010, 26, 14170-14176.	1.6	7
94	Structural properties and visible emission of Eu3+-activated SiO2–ZnO–TiO2 powders prepared by a soft chemical process. Optical Materials, 2016, 62, 438-446.	1.7	7
95	Blue and NIR emission from nanostructured Tm3+/  Yb3+co-doped SiO2–Ta2O5for photonic applicatio Journal Physics D: Applied Physics, 2016, 49, 175107.	ns 1.3	7
96	Yb3+ concentration influences UV–Vis to NIR energy conversion in nanostructured Pr3+ and Yb3+ co-doped SiO2-Nb2O5 materials for photonics. Journal of Luminescence, 2018, 199, 454-460.	1.5	7
97	Highly red luminescent Nb2O5:Eu3+ nanoparticles in silicate host for solid-state lighting and energy conversion. Optical Materials, 2021, 111, 110671.	1.7	7
98	Sol-Gel-Derived Erbium-Activated Silica-Titania and Silica-Hafnia Planar Waveguides for 1.5µm Application in C Band of Telecommunication. Spectroscopy Letters, 2014, 47, 381-386.	0.5	6
99	Photoluminescent and structural properties of ZnO containing Eu3+ using PEG as precursor. Journal of Luminescence, 2015, 167, 197-203.	1.5	6
100	Dipole-dipole energy transfer mechanism to the blue-white-red color-tunable emission presented by CaYAlO4:Tb3+,Eu3+ biocompatibility material obtained by the simple and low cost of chemical route. Materials Chemistry and Physics, 2020, 247, 122855.	2.0	6
101	Single Er3+, Yb3+: KGd3F10 Nanoparticles for Nanothermometry. Frontiers in Chemistry, 2021, 9, 712659.	1.8	6
102	Wide multicolor tunability of blue-to-green up-conversion emission and white light generation in Pr3+/Yb3+ co-doped yttrium tantalates. Journal of Luminescence, 2022, 245, 118761.	1.5	6
103	Glass-based 1-D dielectric microcavities. Optical Materials, 2016, 61, 11-14.	1.7	5
104	Determination of the Eu 3+ ion local structure in oxide and fluoride crystals. Journal of Luminescence, 2016, 170, 556-559.	1.5	5
105	Photoluminescence properties of Er ³⁺ and Er ³⁺ /Yb ³⁺ doped tellurite glass and glass-ceramics containing Bi ₂ Te ₄ O ₁₁ crystals. Dalton Transactions, 2022, 51, 4087-4096.	1.6	5
106	Modulating white light emission temperature in Ho3+/Yb3+/Tm3+ triply doped nanostructured GeO2-Nb2O5 materials for WLEDs applications. Journal of Luminescence, 2022, 248, 118978.	1.5	5
107	Brillouin scattering in planar waveguides. II. Experiments. Journal of Applied Physics, 2003, 94, 4882.	1.1	4

108 Photonic glass-ceramics: consolidated outcomes and prospects. , 2015, , .

#	Article	IF	CITATIONS
109	Multifunctional possible application of the Er3+/Yb3+-coped Al2O3 prepared by recyclable precursor (aluminum can) and also by sol-gel process. Optical Materials, 2018, 84, 504-513.	1.7	4
110	Structure of Redispersible SnO2 Nanoparticles. Journal of Sol-Gel Science and Technology, 2003, 28, 45-50.	1.1	3
111	Nucleation and Crystallization of Titania Nanoparticles in Silica Titania Planar Waveguides: a Study by Low Frequency Raman Scattering. Materials Science Forum, 2004, 455-456, 520-526.	0.3	3
112	Generation of wide color gamut visible light in NIR-excited thulium-holmium-ytterbium codoped tantalum oxide nanopowders. , 2010, , .		3
113	Tailoring the Structure and Luminescence of Nanostructured Er ³⁺ and Er ³⁺ /Yb ³⁺ â€Activated Hafniaâ€Based Systems. Journal of the American Ceramic Society, 2015, 98, 3136-3144.	1.9	3
114	NIR luminescence from erbium doped (100â^' x)SiO 2 : x ZnO powders obtained by soft chemical synthesis. Journal of Luminescence, 2016, 170, 663-670.	1.5	3
115	Highly colloidal luminescent Er3+, Yb3+-codoped KY3F10 nanoparticles for theranostic applications. Materials Today Communications, 2021, 28, 102553.	0.9	3
116	Crystallization of bronze-like perovskite in potassium tantalum germanate glasses: Glass ceramic preparation and its optical properties. Optical Materials, 2021, 122, 111803.	1.7	3
117	Inorganic nanoparticles in organic-inorganic hybrid hosts for planar waveguides. , 2002, , .		2
118	Fabrication by rf-sputtering processing of Er3+/Yb3+-codoped silica-titania planar waveguides. , 2003, , .		2
119	Erbium/Ytterbium-activated silica-titania planar and channel waveguides prepared by rf-sputtering. , 2003, , .		2
120	Erbium-Activated Silica-Hafnia: a Reliable Photonic System. , 2008, , .		2
121	Er3+-activated photonic structures fabricated by sol-gel and rf-sputtering techniques. , 2009, , .		2
122	Simultaneous excitation at IR and UV of RE3+ triply doped SiO2-Gd2O3 materials for energy conversion purposes. Ceramics International, 2021, 47, 35187-35200.	2.3	2
123	Niobium oxide influence in the phosphate glasses triply doped with Er3+/Yb3+/Eu3+ prepared by the melting process. Journal of Non-Crystalline Solids, 2021, 571, 121051.	1.5	2
124	Influence of lanthanide (Gd, Tb or Ce) and silver doping on the luminescence lifetimes of calcium borate investigated by pulsed optically stimulated luminescence. Journal of Luminescence, 2022, 248, 118809.	1.5	2
125	Phase-sensitive radioluminescence and photoluminescence features in Tm ³⁺ -doped yttrium tantalates for cyan and white light generation. Dalton Transactions, 2022, 51, 11108-11124.	1.6	2
126	Planar Waveguides Based on Nanocrystalline and Er ³⁺ Doped SnO ₂ . Materials Science Forum, 2002, 403, 107-110.	0.3	1

#	Article	IF	CITATIONS
127	Erbium-activate HfO 2 -based waveguides for photonics. , 2003, 4829, 89.		1
128	Photoluminescence-structure relationships in ormosils for integrated optical devices. Materials Research Society Symposia Proceedings, 2004, 847, 79.	0.1	1
129	Er3+/Yb3+activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering. , 2006, 6183, 173.		1
130	Glass-ceramics for photonics: Laser material processing. , 2015, , .		1
131	Magnetic and Highly Luminescent Heterostructures of Gd3+/ZnO Conjugated to GCIS/ZnS Quantum Dots for Multimodal Imaging. Nanomaterials, 2021, 11, 1817.	1.9	1
132	NIR Luminescence from Sol-Gel Er3+Doped SiO2:GeO2Transparent Gels, Nanostructured Powders and Thin Films for Photonic Applications. Journal of the Brazilian Chemical Society, 2015, , .	0.6	1
133	Super Broadband at Telecom Wavelengths From RE3+-Doped SiO2-Ta2O5 Glass Ceramics Planar Waveguides. Frontiers in Chemistry, 0, 10, .	1.8	1
134	<title>Rare-earth-doped HfO<formula><inf><roman>2</roman></inf></formula> nanoparticles
embedded in
SiO<formula><inf><roman>2</roman></inf></formula>-HfO<formula><inf><roman>2</roman></inf></formula
planar waveguides: preparation and optical, structural, and spectroscopic characterization</title> .,	>	0
135	2000, 3943, 10. Frequency upconversion in Er3+ and Yb3+-doped zirconia and hafnia nanocrystals excited at 980 nm in the continuous-wave regime. , 2009, , .		0
136	Red photonic glasses and confined structures. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62, 647-653.	0.8	0
137	Near Infrared Emission at 1000 nm from Nanostructured Pr3+/Yb3+Co-doped SiO2-Nb2O5for Solar Cell Application. Journal of the Brazilian Chemical Society, 2015, , .	0.6	0
138	Glass-based confined structures enabling light control. AIP Conference Proceedings, 2015, , .	0.3	0
139	GLASSY MATERIALS AND LIGHT: PART 1. Quimica Nova, 2016, , .	0.3	0
140	GLASSY MATERIALS AND LIGHT: PART 2. Quimica Nova, 2016, , .	0.3	0
141	Studying the catecholamine effect on the electronic delocalization of the paramagnetic [Ru(NH3)4(catecholamine)]+ complex through 1H-NMR, theoretical calculations, and resonance Raman, Journal of Coordination Chemistry, 2020, 73, 191-205	0.8	0