
Zhenhai Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crumpled Nitrogenâ€Doped Graphene Nanosheets with Ultrahigh Pore Volume for Highâ€Performance Supercapacitor. Advanced Materials, 2012, 24, 5610-5616.	11.1	880
2	Constructing 2D Porous Graphitic C ₃ N ₄ Nanosheets/Nitrogenâ€Doped Graphene/Layered MoS ₂ Ternary Nanojunction with Enhanced Photoelectrochemical Activity. Advanced Materials, 2013, 25, 6291-6297.	11.1	772
3	An Advanced Nitrogenâ€Doped Graphene/Cobaltâ€Embedded Porous Carbon Polyhedron Hybrid for Efficient Catalysis of Oxygen Reduction and Water Splitting. Advanced Functional Materials, 2015, 25, 872-882.	7.8	683
4	High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy and Environmental Science, 2014, 7, 609-616.	15.6	605
5	Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 2015, 6, 8632.	5.8	598
6	Electrocatalysis for CO ₂ conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50, 4993-5061.	18.7	559
7	Nitrogenâ€Enriched Coreâ€Shell Structured Fe/Fe ₃ Câ€C Nanorods as Advanced Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2012, 24, 1399-1404.	11.1	517
8	Metalâ^'Organic Frameworkâ€Derived Nitrogenâ€Doped Coreâ€Shellâ€Structured Porous Fe/Fe ₃ C@C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions. Advanced Energy Materials, 2014, 4, 1400337.	10.2	512
9	Oxygenâ€Containing Amorphous Cobalt Sulfide Porous Nanocubes as Highâ€Activity Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline/Neutral Medium. Angewandte Chemie - International Edition, 2017, 56, 4858-4861.	7.2	460
10	Stabilizing MoS ₂ Nanosheets through SnO ₂ Nanocrystal Decoration for Highâ€Performance Gas Sensing in Air. Small, 2015, 11, 2305-2313.	5.2	333
11	N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy, 2018, 49, 393-402.	8.2	300
12	Perpendicularly Oriented MoSe ₂ /Graphene Nanosheets as Advanced Electrocatalysts for Hydrogen Evolution. Small, 2015, 11, 414-419.	5.2	276
13	Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS ₂ for Lithium and Sodium Storage. ACS Nano, 2018, 12, 1592-1602.	7.3	275
14	Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. Journal of Materials Chemistry, 2012, 22, 11009.	6.7	274
15	Vertically Oriented Graphene Bridging Active‣ayer/Currentâ€Collector Interface for Ultrahigh Rate Supercapacitors. Advanced Materials, 2013, 25, 5799-5806.	11.1	270
16	Strongly Coupled Ternary Hybrid Aerogels of N-deficient Porous Graphitic-C ₃ N ₄ Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation. Nano Letters, 2016, 16, 2268-2277.	4.5	256
17	Silicon nanotube anode for lithium-ion batteries. Electrochemistry Communications, 2013, 29, 67-70.	2.3	236
18	Less is More: Dopantâ€Free Hole Transporting Materials for Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702512.	10.2	236

#	Article	IF	CITATIONS
19	N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. Nano Energy, 2014, 8, 157-164.	8.2	234
20	Znâ€MOFâ€74 Derived Nâ€Doped Mesoporous Carbon as pHâ€Universal Electrocatalyst for Oxygen Reduction Reaction. Advanced Functional Materials, 2017, 27, 1606190.	7.8	231
21	Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy and Environmental Science, 2020, 13, 2431-2440.	15.6	229
22	Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell. Biosensors and Bioelectronics, 2016, 81, 46-53.	5.3	226
23	Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems. Journal of Materials Chemistry A, 2019, 7, 8006-8029.	5.2	221
24	Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy, 2015, 12, 1-8.	8.2	210
25	Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosensors and Bioelectronics, 2014, 54, 251-257.	5.3	208
26	Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries. Carbon, 2018, 127, 149-157.	5.4	204
27	A General Approach to One-Pot Fabrication of Crumpled Graphene-Based Nanohybrids for Energy Applications. ACS Nano, 2012, 6, 7505-7513.	7.3	201
28	A 3D hybrid of layered MoS ₂ /nitrogen-doped graphene nanosheet aerogels: an effective catalyst for hydrogen evolution in microbial electrolysis cells. Journal of Materials Chemistry A, 2014, 2, 13795-13800.	5.2	198
29	Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO ₂ Films for Solar Energy Conversion Applications. Journal of Physical Chemistry C, 2008, 112, 1282-1292.	1.5	192
30	Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO ₂ Reduction to HCOOH. Angewandte Chemie - International Edition, 2021, 60, 12554-12559.	7.2	188
31	Fast Redox Kinetics in Biâ€Heteroatom Doped 3D Porous Carbon Nanosheets for Highâ€Performance Hybrid Potassiumâ€Ion Battery Capacitors. Advanced Energy Materials, 2019, 9, 1901533.	10.2	186
32	An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 4948-4954.	5.2	184
33	Strongly Coupled 3D Hybrids of Nâ€doped Porous Carbon Nanosheet/CoNi Alloyâ€Encapsulated Carbon Nanotubes for Enhanced Electrocatalysis. Small, 2015, 11, 5940-5948.	5.2	176
34	Tunable Synthesis of Yolk–Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 42084-42092.	4.0	173
35	Pt Nanoparticles Inserting in Carbon Nanotube Arrays: Nanocomposites for Glucose Biosensors. Journal of Physical Chemistry C, 2009, 113, 13482-13487.	1.5	171
36	Metal Nitride/Graphene Nanohybrids: General Synthesis and Multifunctional Titanium Nitride/Graphene Electrocatalyst. Advanced Materials, 2011, 23, 5445-5450.	11.1	171

#	Article	IF	CITATIONS
37	Facile Oneâ€Pot, Oneâ€5tep Synthesis of a Carbon Nanoarchitecture for an Advanced Multifunctonal Electrocatalyst. Angewandte Chemie - International Edition, 2014, 53, 6496-6500.	7.2	169
38	Hierarchical Carbonâ€Coated LiFePO ₄ Nanoplate Microspheres with High Electrochemical Performance for Liâ€ion Batteries. Advanced Materials, 2011, 23, 1126-1129.	11.1	168
39	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€Species Content for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 3244-3251.	7.2	167
40	Fast and Selective Room-Temperature Ammonia Sensors Using Silver Nanocrystal-Functionalized Carbon Nanotubes. ACS Applied Materials & Interfaces, 2012, 4, 4898-4904.	4.0	164
41	One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon, 2012, 50, 4379-4387.	5.4	162
42	Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale, 2013, 5, 1353.	2.8	158
43	Synthesizing Nitrogen-Doped Activated Carbon and Probing its Active Sites for Oxygen Reduction Reaction in Microbial Fuel Cells. ACS Applied Materials & amp; Interfaces, 2014, 6, 7464-7470.	4.0	157
44	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Singleâ€Atomic Iron Sites. Angewandte Chemie - International Edition, 2021, 60, 9078-9085.	7.2	157
45	High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production. Journal of the American Chemical Society, 2022, 144, 7224-7235.	6.6	156
46	Nanohybrid photocatalysts with ZnIn2S4 nanosheets encapsulated UiO-66 octahedral nanoparticles for visible-light-driven hydrogen generation. Applied Catalysis B: Environmental, 2020, 260, 118152.	10.8	154
47	Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2. Scientific Reports, 2015, 5, 10714.	1.6	152
48	Ru-RuO2/CNT hybrids as high-activity pH-universal electrocatalysts for water splitting within 0.73†V in an asymmetric-electrolyte electrolyzer. Nano Energy, 2019, 61, 576-583.	8.2	151
49	Template Synthesis of Aligned Carbon Nanotube Arrays using Glucose as a Carbon Source: Pt Decoration of Inner and Outer Nanotube Surfaces for Fuelâ€Cell Catalysts. Advanced Functional Materials, 2008, 18, 959-964.	7.8	149
50	Two Novel Metalâ~'Organic Frameworks (MOFs) with (3,6)-Connected Net Topologies: Syntheses, Crystal Structures, Third-Order Nonlinear Optical and Luminescent Properties. Crystal Growth and Design, 2010, 10, 2613-2619.	1.4	148
51	Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy, 2017, 41, 600-608.	8.2	148
52	TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. Journal of Power Sources, 2013, 234, 100-106.	4.0	136
53	Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells. Electrochemistry Communications, 2007, 9, 1867-1872.	2.3	135
54	Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. Journal of Materials Chemistry A, 2013, 1, 4462.	5.2	129

#	Article	IF	CITATIONS
55	Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells. Journal of Power Sources, 2016, 307, 561-568.	4.0	128
56	Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochemistry Communications, 2012, 14, 71-74.	2.3	127
57	Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane. Angewandte Chemie - International Edition, 2018, 57, 13120-13124.	7.2	127
58	Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst, The, 2013, 138, 2877.	1.7	125
59	Multifunctional high-activity and robust electrocatalyst derived from metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 17288-17298.	5.2	123
60	Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Applied Catalysis B: Environmental, 2021, 293, 120213.	10.8	123
61	In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn–air batteries. Nanoscale, 2016, 8, 20048-20055.	2.8	122
62	Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries. Chemical Engineering Journal, 2020, 379, 122371.	6.6	122
63	Reliable and General Route to Inverse Opal Structured Nanohybrids of Carbon onfined Transition Metal Sulfides Quantum Dots for Highâ€Performance Sodium Storage. Advanced Energy Materials, 2018, 8, 1801452.	10.2	118
64	Electrochemical neutralization energy: from concept to devices. Chemical Society Reviews, 2021, 50, 1495-1511.	18.7	117
65	Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomaterials, 2006, 27, 5740-5747.	5.7	116
66	FeCo Alloy Nanoparticles Confined in Carbon Layers as High-activity and Robust Cathode Catalyst for Zn-Air Battery. Electrochimica Acta, 2016, 220, 354-362.	2.6	112
67	Solvent-Controlled Synthesis and Electrochemical Lithium Storage of One-Dimensional TiO2Nanostructures. Inorganic Chemistry, 2006, 45, 6944-6949.	1.9	111
68	Real-Time, Selective Detection of Pb ²⁺ in Water Using a Reduced Graphene Oxide/Gold Nanoparticle Field-Effect Transistor Device. ACS Applied Materials & Interfaces, 2014, 6, 19235-19241.	4.0	111
69	Oxygen ontaining Amorphous Cobalt Sulfide Porous Nanocubes as Highâ€Activity Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline/Neutral Medium. Angewandte Chemie, 2017, 129, 4936-4939.	1.6	110
70	3D graphene network encapsulating SnO ₂ hollow spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 4535-4542.	5.2	109
71	Highly dispersed ultrasmall NiS ₂ nanoparticles in porous carbon nanofiber anodes for sodium ion batteries. Nanoscale, 2019, 11, 4688-4695.	2.8	107
72	Fast response and recovery of hydrogen sensing in Pd–Pt nanoparticle–graphene composite layers. Nanotechnology, 2011, 22, 275719.	1.3	100

#	Article	IF	CITATIONS
73	Moltenâ€Saltâ€Assisted Synthesis of Bismuth Nanosheets for Longâ€ŧerm Continuous Electrocatalytic Conversion of CO ₂ to Formate. Angewandte Chemie - International Edition, 2020, 59, 20112-20119.	7.2	100
74	3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries. Nanoscale, 2016, 8, 8228-8235.	2.8	99
75	Energy-efficient electrolytic hydrogen production assisted by coupling urea oxidation with a pH-gradient concentration cell. Chemical Communications, 2018, 54, 2603-2606.	2.2	99
76	Rational construction of heterostructured core-shell Bi2S3@Co9S8 complex hollow particles toward high-performance Li- and Na-ion storage. Energy Storage Materials, 2020, 29, 121-130.	9.5	98
77	Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 3300.	6.7	97
78	Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium–sulfur batteries. Nanoscale, 2014, 6, 882-888.	2.8	97
79	Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. Journal of Materials Chemistry A, 2015, 3, 7986-7993.	5.2	95
80	Hierarchical Nanohybrids with Porous CNT-Networks Decorated Crumpled Graphene Balls for Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 9881-9889.	4.0	94
81	Enhanced Photocatalytic Properties of Mesoporous SnO2Induced by Low Concentration ZnO Doping. Crystal Growth and Design, 2007, 7, 1722-1725.	1.4	93
82	Hydrothermal synthesis of vanadium nitride and modulation of its catalytic performance for oxygen reduction reaction. Nanoscale, 2014, 6, 9608.	2.8	93
83	FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 1138-1148.	5.2	93
84	NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode. Scientific Reports, 2015, 5, 11919.	1.6	92
85	Alkaline–Acid Zn–H ₂ O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity. Angewandte Chemie - International Edition, 2018, 57, 3910-3915.	7.2	92
86	Heteroporous MoS ₂ /Ni ₃ S ₂ towards superior electrocatalytic overall urea splitting. Chemical Communications, 2018, 54, 5181-5184.	2.2	92
87	Porous Carbon Nanosheets Codoped with Nitrogen and Sulfur for Oxygen Reduction Reaction in Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2015, 7, 18672-18678.	4.0	86
88	Highly Dispersed NiO Nanoparticles Decorating graphene Nanosheets for Non-enzymatic Glucose Sensor and Biofuel Cell. Scientific Reports, 2016, 6, 36454.	1.6	86
89	NiFeP-MoO2 hybrid nanorods on nickel foam as high-activity and high-stability electrode for overall water splitting. Chemical Engineering Journal, 2021, 409, 128161.	6.6	86
90	Hierarchical vertically oriented graphene as a catalytic counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 188-193.	5.2	85

#	Article	IF	CITATIONS
91	Recent Progress in Electrocatalytic Glycerol Oxidation. Energy Technology, 2021, 9, 2000804.	1.8	83
92	Carbon/iron-based nanorod catalysts for hydrogen production in microbial electrolysis cells. Nano Energy, 2012, 1, 751-756.	8.2	82
93	Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO ₂ reduction to CO. Journal of Materials Chemistry A, 2019, 7, 25191-25202.	5.2	82
94	Selfâ€Assembling of Conductive Interlayerâ€Expanded WS ₂ Nanosheets into 3D Hollow Hierarchical Microflower Bud Hybrids for Fast and Stable Sodium Storage. Advanced Functional Materials, 2020, 30, 1907677.	7.8	82
95	Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkaliâ€Acid Electrocatalytic Sulfion Recycling and H ₂ Generation. Angewandte Chemie - International Edition, 2021, 60, 21550-21557.	7.2	82
96	A self-supported Ni–Co perselenide nanorod array as a high-activity bifunctional electrode for a hydrogen-producing hydrazine fuel cell. Journal of Materials Chemistry A, 2018, 6, 17763-17770.	5.2	81
97	Ultrasensitive Chemical Sensing through Facile Tuning Defects and Functional Groups in Reduced Graphene Oxide. Analytical Chemistry, 2014, 86, 7516-7522.	3.2	80
98	Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23460-23470.	5.2	79
99	Local Spinâ€State Tuning of Iron Singleâ€Atom Electrocatalyst by S oordinated Doping for Kineticsâ€Boosted Ammonia Synthesis. Advanced Materials, 2022, 34, e2202240.	11.1	79
100	Hierarchically structured carbon nanocomposites as electrode materials for electrochemical energy storage, conversion and biosensor systems. Journal of Materials Chemistry, 2009, 19, 8707.	6.7	77
101	Rational design of carbon network cross-linked Si–SiC hollow nanosphere as anode of lithium-ion batteries. Nanoscale, 2014, 6, 342-351.	2.8	76
102	ZnIn2S4 nanosheets decorating WO3 nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation. International Journal of Hydrogen Energy, 2019, 44, 3751-3759.	3.8	76
103	A high-performance catalyst support for methanol oxidation with graphene and vanadium carbonitride. Nanoscale, 2015, 7, 1301-1307.	2.8	75
104	Self-supported bimetallic Ni–Co compound electrodes for urea- and neutralization energy-assisted electrolytic hydrogen production. Nanoscale, 2018, 10, 21087-21095.	2.8	73
105	Modulating the Electrocatalytic Performance of Palladium with the Electronic Metal–Support Interaction: A Case Study on Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 6617-6626.	5.5	73
106	Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungsten disulfide/tungsten trioxide ternary nanohybrids. Nano Energy, 2018, 47, 66-73.	8.2	71
107	Nanostructured Carbon Based Heterogeneous Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ChemCatChem, 2019, 11, 5855-5874.	1.8	70
108	Hollow Porous LiMn ₂ O ₄ Microcubes as Rechargeable Lithium Battery Cathode with High Electrochemical Performance. Small, 2012, 8, 858-862.	5.2	69

#	Article	IF	CITATIONS
109	Highly defective porous CoP nanowire as electrocatalyst for full water splitting. International Journal of Hydrogen Energy, 2017, 42, 29080-29090.	3.8	68
110	<i>In situ</i> formation of vanadium nitride quantum dots on N-doped carbon hollow spheres for superior lithium and sodium storage. Journal of Materials Chemistry A, 2019, 7, 9289-9296.	5.2	68
111	The fluorine-doped and defects engineered carbon nanosheets as advanced electrocatalysts for oxygen electroreduction. Applied Catalysis B: Environmental, 2021, 284, 119721.	10.8	68
112	Straightforward fabrication of a highly branched graphene nanosheet array for a Li-ion battery anode. Journal of Materials Chemistry, 2012, 22, 15514.	6.7	67
113	2D Heterostructure of Amorphous CoFeB Coating Black Phosphorus Nanosheets with Optimal Oxygen Intermediate Absorption for Improved Electrocatalytic Water Oxidation. ACS Nano, 2021, 15, 12418-12428.	7.3	67
114	One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells. Applied Surface Science, 2018, 427, 10-16.	3.1	66
115	Boron and nitrogen co-doped porous carbon nanofibers as metal-free electrocatalysts for highly efficient ammonia electrosynthesis. Journal of Materials Chemistry A, 2019, 7, 26272-26278.	5.2	66
116	Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium–ion hybrid capacitors. Energy and Environmental Science, 2021, 14, 4564-4573.	15.6	66
117	Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nature Communications, 2022, 13, 663.	5.8	66
118	Energetic Span as a Rate-Determining Term for Electrocatalytic Volcanos. ACS Catalysis, 2018, 8, 10590-10598.	5.5	63
119	N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors. Journal of Materials Chemistry A, 2022, 10, 6489-6498.	5.2	63
120	One-step ultrasonic spray route for rapid preparation of hollow Fe3O4/C microspheres anode for lithium-ion batteries. Chemical Engineering Journal, 2017, 330, 995-1001.	6.6	62
121	Cobalt oxide hollow microspheres with micro- and nano-scale composite structure: Fabrication and electrochemical performance. Journal of Solid State Chemistry, 2009, 182, 1055-1060.	1.4	61
122	Ferrocene-based porous organic polymer derived high-performance electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 22163-22169.	5.2	61
123	Three-birds-with-one-stone electrolysis for energy-efficiency production of gluconate and hydrogen. Applied Catalysis B: Environmental, 2020, 277, 119178.	10.8	61
124	Graphene-based electrode materials for microbial fuel cells. Science China Materials, 2015, 58, 496-509.	3.5	60
125	Bottomâ€Up Construction of Porous Organic Frameworks with Builtâ€In TEMPO as a Cathode for Lithium–Sulfur Batteries. ChemSusChem, 2017, 10, 2955-2961.	3.6	58
126	In Situ Growth of Nitrogen-Doped Carbon-Coated γ-Fe ₂ O ₃ Nanoparticles on Carbon Fabric for Electrochemical N ₂ Fixation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8853-8859.	3.2	58

#	Article	IF	CITATIONS
127	Ultrathin ZnIn2S4 nanosheets decorating PPy nanotubes toward simultaneous photocatalytic H2 production and 1,4-benzenedimethanol valorization. Applied Catalysis B: Environmental, 2022, 300, 120737.	10.8	58
128	Nitrogen-doped activated carbon as a metal free catalyst for hydrogen production in microbial electrolysis cells. RSC Advances, 2014, 4, 49161-49164.	1.7	55
129	Highâ€Performance Metalâ€Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid. Advanced Functional Materials, 2020, 30, 2003000.	7.8	55
130	Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO ₂ into formate. Chemical Science, 2020, 11, 3952-3958.	3.7	55
131	Ultrahigh-efficiency photocatalysts based on mesoporous Pt–WO3 nanohybrids. Physical Chemistry Chemical Physics, 2013, 15, 6773.	1.3	53
132	Metallic CoS ₂ nanowire electrodes for high cycling performance supercapacitors. Nanotechnology, 2015, 26, 494001.	1.3	52
133	One-pot synthesis of high-performance Co/graphene electrocatalysts for glucose fuel cells free of enzymes and precious metals. Chemical Communications, 2015, 51, 9354-9357.	2.2	52
134	Alkaline–Acid Zn–H ₂ O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity. Angewandte Chemie, 2018, 130, 3974-3979.	1.6	52
135	Layer-by-layer stacked nanohybrids of N,S-co-doped carbon film modified atomic MoS ₂ nanosheets for advanced sodium dual-ion batteries. Journal of Materials Chemistry A, 2019, 7, 24271-24280.	5.2	52
136	Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries. Journal of Energy Chemistry, 2021, 61, 253-268.	7.1	52
137	Ultrafast hydrogen sensing through hybrids of semiconducting single-walled carbon nanotubes and tin oxide nanocrystals. Nanoscale, 2012, 4, 1275.	2.8	51
138	Fe Vacancies Induced Surface FeO ₆ in Nanoarchitectures of Nâ€Doped Graphene Protected βâ€FeOOH: Effective Active Sites for pHâ€Universal Electrocatalytic Oxygen Reduction. Advanced Functional Materials, 2018, 28, 1803330.	7.8	51
139	Nitrogen-doped graphene–vanadium carbide hybrids as a high-performance oxygen reduction reaction electrocatalyst support in alkaline media. Journal of Materials Chemistry A, 2013, 1, 13404.	5.2	50
140	An Asymmetricâ€Electrolyte Znâ~'Air Battery with Ultrahigh Power Density and Energy Density. ChemElectroChem, 2018, 5, 589-592.	1.7	50
141	Molten-salt-mediated synthesis of porous Fe-containing N-doped carbon as efficient cathode catalysts for microbial fuel cells. Applied Surface Science, 2019, 481, 1206-1212.	3.1	49
142	Enzymeless Glucose Detection Based on CoO/Graphene Microsphere Hybrids. Electroanalysis, 2014, 26, 1326-1334.	1.5	48
143	Cu ₃ P/C Nanocomposites for Efficient Electrocatalytic CO ₂ Reduction and Zn–CO ₂ Battery. Journal of Nanoscience and Nanotechnology, 2019, 19, 3232-3236.	0.9	48
144	High-activity Cu nanowires electrocatalysts for CO 2 reduction. Journal of CO2 Utilization, 2017, 20, 27-33.	3.3	46

#	Article	IF	CITATIONS
145	Sucroseâ€Assisted Loading of LiFePO ₄ Nanoparticles on Graphene for Highâ€Performance Lithiumâ€Ion Battery Cathodes. Chemistry - A European Journal, 2013, 19, 5631-5636.	1.7	45
146	Nâ€Ðoped Carbon Nanofibers with Interweaved Nanochannels for Highâ€Performance Sodiumâ€ŀon Storage. Small, 2019, 15, e1904054.	5.2	45
147	Nâ€Doped Carbon Modifying MoSSe Nanosheets on Hollow Cubic Carbon for Highâ€Performance Anodes of Sodiumâ€Based Dualâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2101066.	7.8	45
148	Highâ€Voltage Rechargeable Alkali–Acid Zn–PbO ₂ Hybrid Battery. Angewandte Chemie - International Edition, 2020, 59, 23593-23597.	7.2	44
149	Hierarchical Multicavity Nitrogenâ€Doped Carbon Nanospheres as Efficient Polyselenide Reservoir for Fast and Longâ€Life Sodiumâ€Selenium Batteries. Small, 2020, 16, e2005534.	5.2	44
150	Effects of N and F doping on structure and photocatalytic properties of anatase TiO2 nanoparticles. RSC Advances, 2013, 3, 16657.	1.7	43
151	Strongly Coupled 3D Nanohybrids with Ni ₂ P/Carbon Nanosheets as pHâ€Universal Hydrogen Evolution Reaction Electrocatalysts. ChemElectroChem, 2017, 4, 340-344.	1.7	43
152	Material and configuration design strategies towards flexible and wearable power supply devices: a review. Journal of Materials Chemistry A, 2021, 9, 8950-8965.	5.2	43
153	Solvent polarity tuning to enhance the crystallinity of 2D-covalent organic frameworks for visible-light-driven hydrogen generation. Journal of Materials Chemistry A, 2022, 10, 12378-12390.	5.2	43
154	V8C7 decorating CoP nanosheets-assembled microspheres as trifunctional catalysts toward energy-saving electrolytic hydrogen production. Chemical Engineering Journal, 2020, 399, 125728.	6.6	42
155	Controllable Synthesis and Enhanced Electrochemical Properties of Multifunctional AucoreCo3O4shellNanocubes. Journal of Physical Chemistry B, 2006, 110, 24305-24310.	1.2	41
156	Three-dimensional nanoarchitectures of Co nanoparticles inlayed on N-doped macroporous carbon as bifunctional electrocatalysts for glucose fuel cells. Journal of Materials Chemistry A, 2017, 5, 14763-14774.	5.2	41
157	Recent progress in sodium/potassium hybrid capacitors. Chemical Communications, 2020, 56, 13933-13949.	2.2	41
158	Ultrafine Ru nanoparticles confined in 3D nitrogen-doped porous carbon nanosheet networks for alkali-acid Zn-H2 hybrid battery. Applied Catalysis B: Environmental, 2021, 280, 119412.	10.8	41
159	Lanthanum and Neodymium Doped Barium Ferrite-TiO2/MCNTs/poly(3-methyl thiophene) Composites with Nest Structures: Preparation, Characterization and Electromagnetic Microwave Absorption Properties. Scientific Reports, 2016, 6, 20496.	1.6	40
160	A General Self-Sacrifice Template Strategy to 3D Heteroatom-Doped Macroporous Carbon for High-Performance Potassium-Ion Hybrid Capacitors. Nano-Micro Letters, 2021, 13, 131.	14.4	40
161	Hollow CuS Microcube Electrocatalysts for CO ₂ Reduction Reaction. ChemElectroChem, 2017, 4, 2593-2598.	1.7	39
162	Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries. Nanoscale, 2017, 9, 14722-14729.	2.8	38

#	Article	IF	CITATIONS
163	Fe/Fe ₃ C Nanoparticles Embedded in Nitrogenâ€Doped Carbon Nanotubes as Multifunctional Electrocatalysts for Oxygen Catalysis and CO ₂ Reduction. ChemElectroChem, 2018, 5, 471-477.	1.7	38
164	Self-supported three-dimensional Cu/Cu ₂ O–CuO/rGO nanowire array electrodes for an efficient hydrogen evolution reaction. Chemical Communications, 2018, 54, 6388-6391.	2.2	37
165	Hierarchical Architectured Ternary Nanostructures Photocatalysts with In(OH) ₃ Nanocube on ZnIn ₂ S ₄ /NiS Nanosheets for Photocatalytic Hydrogen Evolution. Solar Rrl, 2020, 4, 2000027.	3.1	37
166	One-Step Low-Temperature Molten Salt Synthesis of Two-Dimensional Si@SiO <i>_x</i> @C Hybrids for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 55844-55855.	4.0	36
167	Coupling effects of Zn single atom and high curvature supports for improved performance of CO2 reduction. Science Bulletin, 2021, 66, 1649-1649.	4.3	36
168	Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO ₂ Reduction to HCOOH. Angewandte Chemie, 2021, 133, 12662-12667.	1.6	36
169	Hybrid alkali-acid urea-nitrate fuel cell for degrading nitrogen-rich wastewater. Applied Catalysis B: Environmental, 2021, 286, 119892.	10.8	36
170	A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Research, 2018, 11, 5968-5977.	5.8	35
171	Cost-effective and durable electrocatalysts for Co-electrolysis of CO2 conversion and glycerol upgrading. Nano Energy, 2022, 92, 106751.	8.2	35
172	Carbon Nanotubes/TiO ₂ Nanotubes Hybrid Supercapacitor. Journal of Nanoscience and Nanotechnology, 2007, 7, 3328-3331.	0.9	34
173	Electrochemical Hydrogen Generation by Oxygen Evolution Reactionâ€Alternative Anodic Oxidation Reactions. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	34
174	Improved electrochemical properties of single crystalline NiO nanoflakes for lithium storage and oxygen electroreduction. RSC Advances, 2012, 2, 5185.	1.7	33
175	Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes. Nano Research, 2018, 11, 1135-1145.	5.8	33
176	Nitrogen-doped graphene nanosheets as high efficient catalysts for oxygen reduction reaction. Science Bulletin, 2012, 57, 3065-3070.	1.7	31
177	Facile Sprayâ€Pyrolysis Synthesis of Yolk–Shell Earthâ€Abundant Elemental Nickel–Ironâ€Based Nanohybrid Electrocatalysts for Full Water Splitting. ChemSusChem, 2017, 10, 4756-4763.	3.6	31
178	Nitrogen and Sulfur Coâ€doped Carbon Nanosheets for Electrochemical Reduction of CO ₂ . ChemCatChem, 2020, 12, 2203-2208.	1.8	31
179	Graphene Loading Molybdenum Carbide/Oxide Hybrids as Advanced Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 21246-21250.	3.8	30
180	2 D Hybrid of Ni‣DH Chips on Carbon Nanosheets as Cathode of Zinc–Air Battery for Electrocatalytic Conversion of O ₂ into H ₂ O ₂ . ChemSusChem, 2020, 13, 1496-1503.	3.6	30

#	Article	IF	CITATIONS
181	Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery. Science China Chemistry, 2019, 62, 385-392.	4.2	29
182	Li-driven electrochemical properties of WO3nanorods. Nanotechnology, 2006, 17, 3116-3120.	1.3	28
183	Novel hybrid Si film/carbon nanofibers as anode materials in lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1947-1952.	5.2	28
184	Optimized CdS quantum dot-sensitized solar cell performance through atomic layer deposition of ultrathin TiO2 coating. RSC Advances, 2012, 2, 7843.	1.7	27
185	Nitrogen-doped carbon coating mesoporous ZnS nanospheres as high-performance anode material of sodium-ion batteries. Materials Today Communications, 2019, 19, 396-401.	0.9	26
186	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Singleâ€Atomic Iron Sites. Angewandte Chemie, 2021, 133, 9160-9167.	1.6	26
187	Selective Deposition of CdSe Nanoparticles on Reduced Graphene Oxide to Understand Photoinduced Charge Transfer in Hybrid Nanostructures. ACS Applied Materials & amp; Interfaces, 2011, 3, 2703-2709.	4.0	25
188	CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries. Nanoscale Research Letters, 2013, 8, 499.	3.1	25
189	Cu nanoparticles decorating rGO nanohybrids as electrocatalyst toward CO 2 reduction. Journal of CO2 Utilization, 2017, 22, 231-237.	3.3	25
190	Interfacial engineering of Ru–S–Sb/antimonene electrocatalysts for highly efficient electrolytic hydrogen generation in neutral electrolyte. Chemical Communications, 2019, 55, 10884-10887.	2.2	25
191	An Overview of Flexible Electrode Materials/Substrates for Flexible Electrochemical Energy Storage/Conversion Devices. European Journal of Inorganic Chemistry, 2021, 2021, 606-619.	1.0	25
192	Reduced graphene oxide supporting hollow bimetallic phosphide nanoparticle hybrids for electrocatalytic oxygen evolution. Electrochemistry Communications, 2017, 83, 85-89.	2.3	24
193	Facile Synthesis of P-Doped Carbon Nanosheets as Janus Electrodes of Advanced Potassium-Ion Hybrid Capacitor. ACS Applied Materials & Interfaces, 2021, 13, 29511-29521.	4.0	24
194	Bifunctional Mn-doped CoSe2 nanonetworks electrode for hybrid alkali/acid electrolytic H2 generation and glycerol upgrading. Journal of Energy Chemistry, 2022, 72, 424-431.	7.1	24
195	Electrochemical Behavior of <i>α</i> -MoO ₃ Nanorods as Cathode Materials for Rechargeable Lithium Batteries. Journal of Nanoscience and Nanotechnology, 2006, 6, 2117-2122.	0.9	23
196	Novel Hybrid Carbon Nanofiber/Highly Branched Graphene Nanosheet for Anode Materials in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 18590-18596.	4.0	23
197	3D Graphene Network Encapsulating Mesoporous ZnS Nanospheres as Highâ€Performance Anode Material in Sodium″on Batteries. ChemElectroChem, 2018, 5, 1552-1558.	1.7	23
198	Hollow black TiAlO _x nanocomposites for solar thermal desalination. Nanoscale, 2019, 11, 9958-9968.	2.8	23

#	Article	IF	CITATIONS
199	Metal–Organic Framework-Derived CuS Nanocages for Selective CO ₂ Electroreduction to Formate. CCS Chemistry, 2021, 3, 199-207.	4.6	23
200	Nitrogen-doped graphite encapsulating RuCo nanoparticles toward high-activity catalysis of water oxidation and reduction. Chemical Engineering Journal, 2021, 422, 130077.	6.6	23
201	Almond shell derived porous carbon for a high-performance anode of microbial fuel cells. Sustainable Energy and Fuels, 2019, 3, 3415-3421.	2.5	22
202	RuS2-x quantum dots/rGO as bifunctional hydrogen electrocatalysts for harvesting electrochemical neutralization energy. Journal of Power Sources, 2020, 472, 228625.	4.0	22
203	Nickel doped MoS2 nanoparticles as precious-metal free bifunctional electrocatalysts for glucose assisted electrolytic H2 generation. International Journal of Hydrogen Energy, 2020, 45, 32940-32948.	3.8	21
204	A facile one-pot method for synthesis of low-cost iron oxide/activated carbon nanotubeelectrode materials for lithium-ion batteries. Dalton Transactions, 2013, 42, 1356-1359.	1.6	20
205	Porous platinum–silver bimetallic alloys: surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale, 2018, 10, 21703-21711.	2.8	20
206	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€ S pecies Content for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 3270-3277.	1.6	20
207	Rational design of Cu3PdN nanocrystals for selective electroreduction of carbon dioxide to formic acid. Journal of Colloid and Interface Science, 2021, 586, 491-497.	5.0	20
208	Defect-Rich MoO ₃ Nanobelt Cathode for a High-Performance Hybrid Alkali/Acid Zn-MoO ₃ Rechargeable Battery. ACS Sustainable Chemistry and Engineering, 2021, 9, 11524-11533.	3.2	20
209	Single crystalline Pt nanotubes with superior electrocatalytic stability. Journal of Materials Chemistry, 2012, 22, 16732.	6.7	19
210	Porous Organic Polymer Gel Derived Electrocatalysts for Efficient Oxygen Reduction. ChemElectroChem, 2019, 6, 485-492.	1.7	19
211	Online Electrochemistry–Mass Spectrometry Evaluation of the Acidic Oxygen Evolution Reaction at Supported Catalysts. ACS Catalysis, 2021, 11, 12745-12753.	5.5	18
212	Dual sites modulating MoO2 nanospheres for synergistically enhanced electrocatalysis of water oxidation. Chemical Engineering Journal, 2022, 443, 136339.	6.6	18
213	Nitrogenâ€Doped Carbon Nanosheets Encapsulating Cobalt Nanoparticle Hybrids as Highâ€Performance Bifunctional Electrocatalysts. ChemElectroChem, 2019, 6, 2683-2688.	1.7	17
214	Reversible Zn-quinone battery with harvesting electrochemical neutralization energy. Journal of Power Sources, 2019, 428, 37-43.	4.0	17
215	Hybrid electrocatalyst of CoFe2O4 decorating carbon spheres for alkaline oxygen evolution reaction. Ceramics International, 2022, 48, 5442-5449.	2.3	17
216	Ni(OH) ₂ Nanosheet Electrocatalyst toward Alkaline Urea Electrolysis for Energyâ€ S aving Acidic Hydrogen Production. ChemElectroChem, 2019, 6, 5313-5320.	1.7	16

#	Article	IF	CITATIONS
217	Highâ€Voltage Rechargeable Alkali–Acid Zn–PbO ₂ Hybrid Battery. Angewandte Chemie, 2020, 132, 23799-23803.	1.6	16
218	Bifunctional Electrolyzation for Simultaneous Organic Pollutant Degradation and Hydrogen Generation. ACS ES&T Engineering, 2021, 1, 1360-1368.	3.7	16
219	Cl-doped carbon nitride nanostrips for remarkably improving visible-light photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 28591-28601.	3.8	15
220	Facile Preparation of Nickel Nanoparticle-Modified Carbon Nanotubes with Application as a Nonenzymatic Electrochemical Glucose Sensor. Analytical Letters, 2016, 49, 568-578.	1.0	14
221	Monodisperse copper selenide nanoparticles for ultrasensitive and selective non-enzymatic glucose biosensor. Electrochimica Acta, 2019, 327, 135020.	2.6	14
222	Moltenâ€Saltâ€Assisted Synthesis of Bismuth Nanosheets for Longâ€ŧerm Continuous Electrocatalytic Conversion of CO ₂ to Formate. Angewandte Chemie, 2020, 132, 20287-20294.	1.6	14
223	Co3O4–C@FeMoP on nickel foam as bifunctional electrocatalytic electrode for high-performance alkaline water splitting. International Journal of Hydrogen Energy, 2021, 46, 32846-32857.	3.8	14
224	Tri-profit electrolysis for energy-efficient production of benzoic acid and H2. Journal of Energy Chemistry, 2021, 54, 30-35.	7.1	13
225	The Enhancement of Selectivity and Activity for Two-Electron Oxygen Reduction Reaction by Tuned Oxygen Defects on Amorphous Hydroxide Catalysts. CCS Chemistry, 2022, 4, 566-583.	4.6	13
226	High Mass Loading 3Dâ€Printed Sodiumâ€Ion Hybrid Capacitors. Advanced Functional Materials, 2022, 32, .	7.8	13
227	Stable blue-emitting molecular material derived from calix[4]arene and pyrazoline: Synthesis, optical and electrochemical properties. Synthetic Metals, 2009, 159, 1944-1949.	2.1	12
228	Cu 3 PdN nanocrystals electrocatalyst for formic acid oxidation. Electrochemistry Communications, 2016, 71, 61-64.	2.3	12
229	Promotion for Full Water Splitting toward Vanadium-Incorporated MoO ₂ –MoNi ₄ Hybrid Nanoarrays. ACS Sustainable Chemistry and Engineering, 2021, 9, 13225-13232.	3.2	12
230	One-pot scalable route to tri-functional electrocatalysts FeCoPx nanoparticles for integrated electrochemical devices. Applied Catalysis B: Environmental, 2021, 295, 120275.	10.8	12
231	Hybrid Electrocatalysis: An Advanced Nitrogenâ€Doped Graphene/Cobaltâ€Embedded Porous Carbon Polyhedron Hybrid for Efficient Catalysis of Oxygen Reduction and Water Splitting (Adv. Funct. Mater.) Tj ETQq1	1 Ø <i>\$</i> 78431	41ngBT /Ove
232	Layered structured CoAl/CdS‣DHs nanocomposites as visible light photocatalyst. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600910.	0.8	11
233	Highâ€Performance Bifunctional Electrocatalysts of Palladium Decoration on Carbon Nanoarchitectures for Indirect Releasing of H ₂ Stored in Formate. Small Structures, 2021, 2, .	6.9	11
234	CeO ₂ quantumâ€dots engineering 3D carbon architectures toward dendriteâ€free Na anode and reversible Te cathode for highâ€performance Naâ€Te batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	11

#	Article	IF	CITATIONS
235	Fast and reversible lithium-induced electrochemical alloying in tin-based composite oxide hierarchical microspheres assembled by nanoplate building blocks. Journal of Power Sources, 2008, 182, 334-339.	4.0	10
236	Graphene Supercapacitors: Vertically Oriented Graphene Bridging Active-Layer/Current-Collector Interface for Ultrahigh Rate Supercapacitors (Adv. Mater. 40/2013). Advanced Materials, 2013, 25, 5798-5798.	11.1	10
237	N/B Co-doped carbon as metal-free cathode catalyst for high-performance asymmetric neutral-alkaline microbial fuel cell. Electrochimica Acta, 2021, 389, 138518.	2.6	10
238	CoSe2 nanocrystals embedded into carbon support as coralline-like catalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 22787-22795.	3.8	9
239	Loading NiCo alloy nanoparticles onto nanocarbon for electrocatalytic conversion of arsenite into arsenate. Electrochemistry Communications, 2019, 104, 106477.	2.3	9
240	Nitrogen-Enriched Core-Shell Structured Fe/Fe3C-C Nanorods as Advanced Electrocatalysts for Oxygen Reduction Reaction (Adv. Mater. 11/2012). Advanced Materials, 2012, 24, 1398-1398.	11.1	8
241	Hierarchical Carbon/Metal Nanostructure with a Combination of 0D Nanoparticles, 1D Nanofibers, and 2D Nanosheets: An Efficient Bifunctional Catalyst for Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 1107-1116.	1.7	7
242	Highâ€Performance Flow Alkaliâ€Al/Acid Hybrid Fuel Cell for Highâ€Rate H ₂ Generation. Advanced Functional Materials, 2021, 31, 2103248.	7.8	7
243	Novel hybrid Si film/highly branched graphene nanosheets for anode materials in lithium-ion batteries. Journal Physics D: Applied Physics, 2019, 52, 345201.	1.3	6
244	Modifying the 316L stainless steel surface by an electrodeposition technique: towards high-performance electrodes for alkaline water electrolysis. Sustainable Energy and Fuels, 2022, 6, 1382-1397.	2.5	6
245	Potassium″on Hybrid Capacitors: Fast Redox Kinetics in Biâ€Heteroatom Doped 3D Porous Carbon Nanosheets for Highâ€Performance Hybrid Potassium″on Battery Capacitors (Adv. Energy Mater. 42/2019). Advanced Energy Materials, 2019, 9, 1970167.	10.2	5
246	From Jackfruit Rags to Hierarchical Porous N-Doped Carbon: A High-Performance Anode Material for Sodium-Ion Batteries. Transactions of Tianjin University, 2019, 25, 429-436.	3.3	5
247	Hydrogen Evolution: Perpendicularly Oriented MoSe ₂ /Graphene Nanosheets as Advanced Electrocatalysts for Hydrogen Evolution (Small 4/2015). Small, 2015, 11, 508-508.	5.2	4
248	Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkaliâ€Acid Electrocatalytic Sulfion Recycling and H ₂ Generation. Angewandte Chemie, 2021, 133, 21720-21727.	1.6	4
249	Thermally stable cobalt amide cyanide as high-activity and durable bifunctional electrocatalyst toward O2 and CO2 reduction. Electrochimica Acta, 2020, 353, 136605.	2.6	3
250	N-doped carbon networks as bifunctional electrocatalyst toward integrated electrochemical devices for Zn-air batteries driving microbial CO2 electrolysis cell. Journal of CO2 Utilization, 2022, 62, 102068.	3.3	3
251	Electrocatalysis: Strongly Coupled 3D Hybrids of N-doped Porous Carbon Nanosheet/CoNi Alloy-Encapsulated Carbon Nanotubes for Enhanced Electrocatalysis (Small 44/2015). Small, 2015, 11, 5939-5939.	5.2	2
252	3D Graphene Network Encapsulating Mesoporous ZnS Nanospheres as Highâ€Performance Anode Material in Sodiumâ€lon Batteries. ChemElectroChem, 2018, 5, 1536-1536.	1.7	2

#	Article	IF	CITATIONS
253	Asymmetric Neutralâ€elkaline Microbial Electrolysis Cells for Hydrogen Production. ChemElectroChem, 2022, 9, .	1.7	2
254	Subâ€1 nm MoC Quantum Dots Decorating Nâ€Doped Graphene as Advanced Electrocatalysts of Flexible Hybrid Alkali–Acid Znâ€Quinone Battery. Small, 2022, , 2201144.	5.2	2
255	Aligned Coaxial Nanowires of Carbon Nanotubes Partially Sheathed with Polyaniline for Chemical Sensors. Chemistry Letters, 2009, 38, 380-381.	0.7	1
256	A Versatile Route to Facile Synthesis of Various Hierarchical Structured Carbon-Based Nanocomposites. Journal of Nanoscience and Nanotechnology, 2010, 10, 5723-5729.	0.9	1
257	An interfacial engineering strategy of electrocatalyst boosts ammonia electrosynthesis. Science China Chemistry, 2019, 62, 921-922.	4.2	1
258	Acidic Electrolytes: Highâ€Performance Metalâ€Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 2020, 30, 2070210.	7.8	1
259	Frontispiz: Alkaline-Acid Zn-H2 O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity. Angewandte Chemie, 2018, 130, .	1.6	0