Alessandra Silvani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584806/publications.pdf Version: 2024-02-01

ALESSANDDA SULVANI

#	Article	IF	CITATIONS
1	Unexpected chiral vicinal tetrasubstituted diamines via borylcopper-mediated homocoupling of isatin imines. Beilstein Journal of Organic Chemistry, 2022, 18, 303-308.	2.2	3
2	DOX mediated synthesis of PLA-co-PS graft copolymers with matrix-driven self-assembly in PLA-based blends. European Polymer Journal, 2022, 170, 111157.	5.4	3
3	Synthesis of potent and selective HDAC6 inhibitors led to unexpected opening of a quinazoline ring. RSC Advances, 2022, 12, 11548-11556.	3.6	6
4	Exploiting Enantiopure βâ€Amino Boronic Acids in Isocyanideâ€Based Multicomponent Reactions. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
5	Synthesis of Fluorine ontaining, UVâ€Responsive PLAâ€Based Materials by Means of Functionalized DOX Monomer. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	2
6	Highly diastereoselective entry to chiral oxindole-based β-amino boronic acids and spiro derivatives. Organic and Biomolecular Chemistry, 2021, 19, 7211-7216.	2.8	4
7	Spiroâ€2â€oxindoles <i>via</i> 1,3â€dipolar cycloadditions. A decade update. European Journal of Organic Chemistry, 2021, 2021, 1653-1675.	2.4	30
8	Carvacrol- and Cardanol-Containing 1,3-Dioxolan-4-ones as Comonomers for the Synthesis of Functional Polylactide-Based Materials. Macromolecules, 2020, 53, 6420-6431.	4.8	8
9	Ecdysteroid Derivatives that Reverse P-Glycoprotein-Mediated Drug Resistance. Journal of Natural Products, 2020, 83, 2434-2446.	3.0	14
10	1,3-Dioxolan-4-Ones as Promising Monomers for Aliphatic Polyesters: Metal-Free, in Bulk Preparation of PLA. Polymers, 2020, 12, 2396.	4.5	3
11	Isonitrile-Based Multicomponent Synthesis of β-Amino Boronic Acids as β-Lactamase Inhibitors. Antibiotics, 2020, 9, 249.	3.7	12
12	Computationally Driven Structure Optimization, Synthesis, and Biological Evaluation of Imidazole-Based Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 6163-6174.	6.4	29
13	Exploitation of the Ugi–Joullié reaction in drug discovery and development. Expert Opinion on Drug Discovery, 2019, 14, 639-652.	5.0	23
14	Eugenol-grafted aliphatic polyesters: Towards inherently antimicrobial PLA-based materials exploiting OCAs chemistry. European Polymer Journal, 2019, 114, 369-379.	5.4	19
15	Allylation of isatin-derived N-Boc-hydrazones followed by Pd-catalyzed carboamination reaction: an entry to 3-spiro-pyrazolidyl-oxindoles. RSC Advances, 2019, 9, 37788-37800.	3.6	3
16	Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: An in situ approach. Composites Science and Technology, 2019, 171, 94-102.	7.8	64
17	Heteronanoparticles by Self-Assembly of Ecdysteroid and Doxorubicin Conjugates To Overcome Cancer Resistance. ACS Medicinal Chemistry Letters, 2018, 9, 468-471.	2.8	14
18	Sequential Multicomponent Strategy for the Diastereoselective Synthesis of Densely Functionalized Spirooxindole-Fused Thiazolidines. ACS Combinatorial Science, 2018, 20, 98-105.	3.8	22

#	Article	IF	CITATIONS
19	One step access to oxindole-based β-lactams through Ugi four-center three-component reaction. RSC Advances, 2018, 8, 34903-34910.	3.6	20
20	One-Pot Synthesis of Sustainable High-Performance Thermoset by Exploiting Eugenol Functionalized 1,3-Dioxolan-4-one. ACS Sustainable Chemistry and Engineering, 2018, 6, 15201-15211.	6.7	31
21	Phytosterol and γ-Oryzanol Conjugates: Synthesis and Evaluation of their Antioxidant, Antiproliferative, and Anticholesterol Activities. Journal of Natural Products, 2018, 81, 2212-2221.	3.0	22
22	Biocatalysed olefin reduction of 3-alkylidene oxindoles by baker's yeast. Tetrahedron, 2017, 73, 4584-4590.	1.9	9
23	Polylactide/cellulose nanocrystals: The in situ polymerization approach to improved nanocomposites. European Polymer Journal, 2017, 94, 173-184.	5.4	36
24	Organocatalytic Access to Enantioenriched Spirooxindole-Based 4-Methyleneazetidines. Molecules, 2017, 22, 2016.	3.8	12
25	Multicomponent Approach to Bioactive Peptide–Ecdysteroid Conjugates: Creating Diversity at C6 by Means of the Ugi Reaction. Synthesis, 2016, 48, 3907-3916.	2.3	10
26	Bruno Danieli (1939–2014). Fìtoterapìâ, 2016, 109, 293-294.	2.2	0
27	Disrupting the PCSK9/LDLR protein–protein interaction by an imidazole-based minimalist peptidomimetic. Organic and Biomolecular Chemistry, 2016, 14, 9736-9740.	2.8	42
28	Highly diastereoselective entry into chiral spirooxindole-based 4-methyleneazetidines via formal [2+2] annulation reaction. Chemical Communications, 2016, 52, 11575-11578.	4.1	31
29	Efficient Synthesis of Spirooxindole-Fused 3-Thiazoline Derivatives by a One-Pot Asinger-Type Reaction. Synlett, 2016, 27, 2831-2835.	1.8	10
30	Organocatalytic vinylogous Mannich reaction of trimethylsiloxyfuran with isatin-derived benzhydryl-ketimines. Organic and Biomolecular Chemistry, 2016, 14, 7768-7776.	2.8	21
31	Organocatalytic Asymmetric Biginelli-like Reaction Involving Isatin. Journal of Organic Chemistry, 2016, 81, 1877-1884.	3.2	48
32	Boehmeriasin A as new lead compound for the inhibition of topoisomerases and SIRT2. European Journal of Medicinal Chemistry, 2015, 92, 766-775.	5.5	32
33	Multicomponent Synthesis and Biological Evaluation of a Piperazine-Based Dopamine Receptor Ligand Library. ACS Medicinal Chemistry Letters, 2015, 6, 882-887.	2.8	9
34	Application of the Ugi reaction with multiple amino acid-derived components: synthesis and conformational evaluation of piperazine-based minimalist peptidomimetics. Organic and Biomolecular Chemistry, 2015, 13, 4993-5005.	2.8	24
35	Complementary isonitrile-based multicomponent reactions for the synthesis of diversified cytotoxic hemiasterlin analogues. Organic and Biomolecular Chemistry, 2015, 13, 11633-11644.	2.8	12
36	Natural Products and Cancer Stem Cells. Current Pharmaceutical Design, 2015, 21, 5547-5557.	1.9	19

#	Article	IF	CITATIONS
37	Hemiasterlin analogues incorporating an aromatic, and heterocyclic type C-terminus: design, synthesis and biological evaluation. Molecular Diversity, 2014, 18, 357-373.	3.9	7
38	Multicomponent access to novel dihydroimidazo[1′,5′:1,2]pyrido[3,4-b]indol-2-ium salts and indoles by means of Ugi/Bischler–Napieralski/heterocyclization two step strategy. Tetrahedron, 2014, 70, 3994-4001.	1.9	19
39	New class of squalene-based releasable nanoassemblies of paclitaxel, podophyllotoxin, camptothecin and epothilone A. European Journal of Medicinal Chemistry, 2014, 85, 179-190.	5.5	34
40	Cannabinoid-free <i>Cannabis sativa</i> L. grown in the Po valley: evaluation of fatty acid profile, antioxidant capacity and metabolic content. Natural Product Research, 2014, 28, 1801-1807.	1.8	39
41	Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discovery Today, 2014, 19, 1547-1562.	6.4	90
42	Asymmetric Ugi 3CR on isatin-derived ketimine: synthesis of chiral 3,3-disubstituted 3-aminooxindole derivatives. Beilstein Journal of Organic Chemistry, 2014, 10, 1383-1389.	2.2	27
43	Synthesis, pharmacological evaluation and conformational investigation of endomorphin-2 hybrid analogues. Molecular Diversity, 2013, 17, 19-31.	3.9	10
44	Quinazolinecarboline alkaloid evodiamine as scaffold for targeting topoisomerase I and sirtuins. Bioorganic and Medicinal Chemistry, 2013, 21, 6920-6928.	3.0	26
45	Tetrahydro-β-carboline-Based Spirocyclic Lactam as Type II′ β-Turn: Application to the Synthesis and Biological Evaluation of Somatostatine Mimetics. Journal of Organic Chemistry, 2013, 78, 2600-2610.	3.2	19
46	Structural and Biological Exploration of Phe ³ –Phe ⁴ -Modified Endomorphin-2 Peptidomimetics. ACS Medicinal Chemistry Letters, 2013, 4, 795-799.	2.8	12
47	The diketopiperazine-fused tetrahydro-β-carboline scaffold as a model peptidomimetic with an unusual α-turn secondary structure. Beilstein Journal of Organic Chemistry, 2013, 9, 147-154.	2.2	14
48	Ugi 4-CR/Pictet–Spengler reaction as a short route to tryptophan-derived peptidomimetics. Organic and Biomolecular Chemistry, 2012, 10, 9004.	2.8	29
49	Phe-Ala-Based Diazaspirocyclic Lactam as Nucleator of Type II′ β-Turn. Journal of Organic Chemistry, 2011, 76, 833-839.	3.2	23
50	Addition of TMSCN to chiral ketimines derived from isatin. Synthesis of an oxindole-based peptidomimetic and a bioactive spirohydantoin. Organic and Biomolecular Chemistry, 2011, 9, 5515.	2.8	51
51	<i>N</i> â€{2â€Methylâ€5â€(triazolâ€1â€yl)phenyl]pyrimidinâ€2â€amine as a Scaffold for the Synthesis of Inhib Bcrâ€Abl. ChemMedChem, 2011, 6, 2009-2018.	itors of	41
52	Synthesis of 3-Heteroaryloxindoles through t-BuOCl-Mediated Oxidation of 3-Heteroarylindoles. Synthesis, 2011, 2011, 352-352.	2.3	0
53	Total synthesis of 275A lehmizidine frog skin alkaloid (or of its enantiomer). Tetrahedron: Asymmetry, 2010, 21, 2329-2333.	1.8	5
54	The spiropiperidine-3,3′-oxindole scaffold: a type II β-turn peptide isostere. Tetrahedron, 2010, 66, 4474-4478.	1.9	40

#	Article	IF	CITATIONS
55	Synthesis of 3-Heteroaryloxindoles through t-BuOCl-Mediated Oxidation of 3-Heteroarylindoles. Synthesis, 2010, 2010, 4075-4081.	2.3	3
56	Grignard Addition to Imines Derived from Isatine: A Method for the Asymmetric Synthesis of Quaternary 3-Aminooxindoles. Journal of Organic Chemistry, 2009, 74, 4537-4541.	3.2	93
57	Tetrahydroisoquinoline-Based Spirocyclic Lactam as a Type Il′ β-Turn Inducing Peptide Mimetic. Journal of Organic Chemistry, 2009, 74, 8098-8105.	3.2	22
58	Olefin Metathesis Based Approach to Diversely Functionalized Pyrrolizidines and Indolizidines; Total Synthesis of (+)-Monomorine. Journal of Organic Chemistry, 2009, 74, 590-596.	3.2	44
59	Inhibitors of tubulin polymerization: Synthesis and biological evaluation of hybrids of vindoline, anhydrovinblastine and vinorelbine with thiocolchicine, podophyllotoxin and baccatin III. Bioorganic and Medicinal Chemistry, 2008, 16, 6269-6285.	3.0	56
60	New chiral diamino ligands as sparteine analogues. Application to the palladium-catalyzed kinetic oxidative resolution of 1-phenyl ethanol. Tetrahedron: Asymmetry, 2008, 19, 1363-1366.	1.8	18
61	Synthesis and conformational analysis of benzimidazole-based reverse turn mimics. Tetrahedron Letters, 2008, 49, 1293-1296.	1.4	5
62	A new spirocyclic proline-based lactam as efficient type ll′ β-turn inducing peptidomimetic. Tetrahedron Letters, 2008, 49, 7423-7425.	1.4	13
63	Pyrroloisoquinoline-Based Tetrapeptide Analogues Mimicking Reverse-Turn Secondary Structures. Journal of Organic Chemistry, 2007, 72, 9765-9768.	3.2	23
64	Synthesis of tetrahydroisoquinoline-based pseudopeptides and their characterization as suitable reverse turn mimetics. Tetrahedron, 2007, 63, 5567-5578.	1.9	23
65	Enantioselective copper-catalyzed cyclopropanation of styrene by means of chiral bispidine ligands. Tetrahedron: Asymmetry, 2007, 18, 659-663.	1.8	22
66	A chemoenzymatic-RCM strategy for the enantioselective synthesis of new dihydroxylated 5-hydroxymethyl-indolizidines and 6-hydroxymethyl-quinolizidines. Tetrahedron: Asymmetry, 2007, 18, 1948-1954.	1.8	23
67	Thiocolchicineâ^'Podophyllotoxin Conjugates:Â Dynamic Libraries Based on Disulfide Exchange Reaction. Journal of Organic Chemistry, 2006, 71, 2848-2853.	3.2	61
68	An Efficient Enantioselective Approach to Cyclic β-Amino Acid Derivatives via Olefin Metathesis Reactions. Journal of Organic Chemistry, 2006, 71, 3317-3320.	3.2	19
69	Nature-inspired indolyl-2-azabicyclo[2.2.2]oct-7-ene derivatives as promising agents for the attenuation of withdrawal symptoms: synthesis of 20-desethyl-20-hydroxymethyl-11-demethoxyibogaine. Natural Product Research, 2006, 20, 758-765.	1.8	2
70	Chiral Amino-Amides as Solution Phase and Immobilized Ligands for the Catalytic Asymmetric Alkylation of Aromatic Aldehydes. Letters in Organic Chemistry, 2006, 3, 430-436.	0.5	9
71	Microwave-Assisted, Solid-Phase Synthesis of a Chiral 1,2,3,4-Tetrahydroquinoline Library. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 691-701.	1.1	6
72	Chiral diamines for asymmetric synthesis: an efficient RCM construction of the ligand core of (â^')- and (+)-sparteine. Tetrahedron Letters, 2005, 46, 7121-7123.	1.4	26

#	Article	IF	CITATIONS
73	Short enantioselective synthesis of sedridines, ethylnorlobelols and coniine via reagent-based differentiation. Tetrahedron: Asymmetry, 2005, 16, 2225-2229.	1.8	34
74	Combinatorial Solid-Phase Synthesis of 6-Hydroxy-1,2,3,4-tetrahydro-β-carbolines froml-5-Hydroxytryptophan. ACS Combinatorial Science, 2005, 7, 458-462.	3.3	13
75	Synthesis and Biological Evaluation of PaclitaxelThiocolchicine Hybrids. Chemistry and Biodiversity, 2004, 1, 327-345.	2.1	20
76	Enzyme assisted enantioselective synthesis of the alkaloid (+)-aloperine. Tetrahedron: Asymmetry, 2004, 15, 2921-2925.	1.8	43
77	Concise asymmetric synthesis of (â^')-halosaline and (2R,9aR)-(+)-2-hydroxy-quinolizidine by ruthenium-catalyzed ring-rearrangement metathesis. Tetrahedron, 2004, 60, 6437-6442.	1.9	27
78	Total Enantioselective Synthesis of (â^')-Cytisine. Organic Letters, 2004, 6, 493-496.	4.6	51
79	New Tetracyclic Colchicinoids from the Reaction of N-Deacetylthiocolchicine and N-Deacetylcolchicine with Nitrous Acid and tert-Butyl Nitrite. Helvetica Chimica Acta, 2003, 86, 2082-2089.	1.6	5
80	New Solution-Free and Polymer-Anchored Chiral Bispidine-Based Amino Alcohols. Synthesis and Screening for the Enantioselective Addition of Diethylzinc to Benzaldehyde ChemInform, 2003, 34, no.	0.0	0
81	New solution free and polymer anchored chiral bispidine-based amino alcohols. Synthesis and screening for the enantioselective addition of diethylzinc to benzaldehyde. Tetrahedron: Asymmetry, 2003, 14, 2453-2458.	1.8	25
82	lbogaine analogues. Synthesis and preliminary pharmacological evaluation of 7-heteroaryl-2-azabicyclo[2.2.2]oct-7-enes. Bioorganic and Medicinal Chemistry, 2003, 11, 1007-1014.	3.0	21
83	Remote Stereocenter Discrimination in the Enzymatic Resolution of Piperidine-2-ethanol. Short Enantioselective Synthesis of Sedamine and Allosedamine. Journal of Organic Chemistry, 2003, 68, 9525-9527.	3.2	69
84	Photochemical Isomerization of Colchicine and Thiocolchicine. Journal of Physical Chemistry A, 2003, 107, 9079-9085.	2.5	13
85	trans-6-Aminocyclohept-3-enols, a New Designed Polyfunctionalized Chiral Building Block for the Asymmetric Synthesis of 2-Substituted-4-hydroxypiperidines. Organic Letters, 2002, 4, 1817-1817.	4.6	0
86	Concise Total Synthesis of (±)-Aloperine and 6-epi-Aloperine. Organic Letters, 2002, 4, 2925-2928.	4.6	21
87	trans-6-Aminocyclohept-3-enols, a New Designed Polyfunctionalized Chiral Building Block for the Asymmetric Synthesis of 2-Substituted-4-hydroxypiperidines. Organic Letters, 2002, 4, 1367-1370.	4.6	21
88	A Convenient Synthesis of Δ7,8-Morphinan-6-one and Its Direct Oxidation to 14-Hydroxy-Δ7,8-morphinan-6-one. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1981-1983.	2.2	3
89	Synthesis of enantiopure diamine ligands related to sparteine, via scandium triflate-catalyzed imino Diels–Alder reactions. Tetrahedron Letters, 2002, 43, 7155-7158.	1.4	42
90	Cyclodimerization of indol-2-ylacetylenes. An example of intermolecular enyne–alkyne cycloaddition. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 127-129.	1.3	9

#	Article	IF	CITATIONS
91	Stereocontrolled reduction of an oxazepinohexahydroindolo[2,3- a]quinolizine derivative: asymmetric total synthesis of (+)-tacamonine. Tetrahedron Letters, 2001, 42, 7237-7240.	1.4	9
92	An Efficient Enantioselective Entry to the Piperidino-Quinolizidine Ring System of Lupine Alkaloids by Means of N-Acyliminium Ion Initiated Cyclization Reactions. European Journal of Organic Chemistry, 2001, 2001, 1377-1383.	2.4	14
93	Double Michael Reaction of <i>N</i> -Carboethoxy-2,3-dihydropyridin-4-one. Synlett, 2001, 2001, 0132-0134.	1.8	8
94	Diastereoselective Diels–Alder Reaction of 5-(Indol-2-yl)-pyran-2-one. Tetrahedron, 2000, 56, 5205-5208.	1.9	7
95	Indole alkaloids by a chemoenzymatic approach: two convergent routes for the first enantioselective synthesis of (+)-20R-15,20-dihydrocleavamine. Tetrahedron Letters, 2000, 41, 3489-3492.	1.4	16
96	The Photochemical Behavior of Colchicone and Thiocolchicone. Photochemistry and Photobiology, 2000, 71, 29.	2.5	9
97	A Chemo-Enzymatic Approach to Some Indole and Quinolizidine Alkaloids From Cs -Symmetric Precursors. Current Organic Chemistry, 2000, 4, 231-261.	1.6	17
98	An efficient chemoenzymatic access to chiral 3,7-diazabicyclo[3.3.1]nonane derivatives. Tetrahedron, 1999, 55, 11871-11878.	1.9	12
99	Formal enantioselective synthesis of tacamonine starting from asymmetrized 2-substituted propane-1,3-diols. Tetrahedron: Asymmetry, 1999, 10, 4057-4064.	1.8	17
100	Convenient synthesis of methyl indol-2-ylpropiolate. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2669-2670.	0.9	19
101	Attempted Oxidative Deamination ofN-Deacetylcolchicinoids with 3,5-Di(tert-butyl)-1,2-benzoquinone: Synthesis of 2H-1,4-Benzoxazine-Type Adducts. Helvetica Chimica Acta, 1999, 82, 1502-1508.	1.6	4
102	Application of the Pd-catalyzed heteroarylation to the synthesis of 5-(indol-2′-yl)pyridin-2-one and 5-(indol-2′-yl)pyran-2-one. Tetrahedron, 1998, 54, 14081-14088.	1.9	46
103	Highly EnantiopureC1-Symmetriccis-Piperidine-3,5-dimethanol Monoacetates by Enzymatic Asymmetrization1. Journal of Organic Chemistry, 1998, 63, 3492-3496.	3.2	29
104	Vinblastine-Type Antitumor Alkaloids:Â A Method for Creating New C17 Modified Analogues. Journal of Organic Chemistry, 1998, 63, 8586-8588.	3.2	13
105	An Expeditious Synthesis of Dimethyl 1-Benzyl-cis-Piperidine-3,5-Dicarboxylate. Synthetic Communications, 1997, 27, 69-77.	2.1	8
106	Diastereoselective Synthesis of 3-Oxo-14,15-dihydroandranginine. Journal of Organic Chemistry, 1997, 62, 6519-6523.	3.2	15
107	Diels-Alder reactions of methyl N-p-methoxybenzensulfonylindole-2-(2-propenoate), a convenient dienophile towards the synthesis of andranginine. Tetrahedron, 1996, 52, 11291-11296.	1.9	9
108	Stereoselective enzymatic hydrolysis of dimethyl meso-piperidine-3,5-dicarboxylates. Tetrahedron: Asymmetry, 1996, 7, 345-348.	1.8	19

#	Article	IF	CITATIONS
109	Aspidosperma Alkaloids. Reaction of 3-Oxotabersonine with Nitrosonium Tetrafluoborate. Natural Product Research, 1995, 7, 141-146.	0.4	4
110	Aspidosperma alkaloids cyclization of secodine intermediate: Synthesis of (±)-3-oxovincadifformine ethyl ester Tetrahedron, 1994, 50, 6941-6954.	1.9	32