John Charonko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584663/publications.pdf

Version: 2024-02-01

471061 433756 1,121 51 17 31 citations h-index g-index papers 56 56 56 1104 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Measurement Science and Technology, 2013, 24, 065301.	1.4	171
2	Assessment of pressure field calculations from particle image velocimetry measurements. Measurement Science and Technology, 2010, 21, 105401.	1.4	121
3	Phase correlation processing for DPIV measurements. Experiments in Fluids, 2008, 45, 485-500.	1.1	95
4	Vortices Formed on the Mitral Valve Tips Aid Normal Left Ventricular Filling. Annals of Biomedical Engineering, 2013, 41, 1049-1061.	1.3	90
5	Particle image velocimetry (PIV) uncertainty quantification using moment of correlation (MC) plane. Measurement Science and Technology, 2018, 29, 115301.	1.4	60
6	Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification. Measurement Science and Technology, 2014, 25, 115301.	1.4	58
7	Loss of Adrenergic Augmentation of Diastolic Intra-LV Pressure Difference in Patients With Diastolic Dysfunction. JACC: Cardiovascular Imaging, 2012, 5, 861-870.	2.3	54
8	In Vitro, Time-Resolved PIV Comparison of the Effect of Stent Design on Wall Shear Stress. Annals of Biomedical Engineering, 2009, 37, 1310-1321.	1.3	53
9	Adaptive gappy proper orthogonal decomposition for particle image velocimetry data reconstruction. Measurement Science and Technology, 2012, 23, 025303.	1.4	46
10	Robust wall gradient estimation using radial basis functions and proper orthogonal decomposition (POD) for particle image velocimetry (PIV) measured fields. Measurement Science and Technology, 20, 045401.	1.4	37
11	Stereo-particle image velocimetry uncertainty quantification. Measurement Science and Technology, 2017, 28, 015301.	1.4	36
12	Left ventricular vortex formation is unaffected by diastolic impairment. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1255-H1262.	1.5	35
13	Variable-density mixing in turbulent jetsÂwithÂcoflow. Journal of Fluid Mechanics, 2017, 825, 887-921.	1.4	35
14	Particle image pattern <i>mutual information</i> and uncertainty estimation for particle image velocimetry. Measurement Science and Technology, 2015, 26, 074001.	1.4	27
15	In Vitro Comparison of the Effect of Stent Configuration on Wall Shear Stress Using Time-resolved Particle Image Velocimetry. Annals of Biomedical Engineering, 2010, 38, 889-902.	1.3	24
16	The effect of initial conditions on mixing transition of the Richtmyer–Meshkov instability. Journal of Fluid Mechanics, 2020, 904, .	1.4	20
17	Disabledâ€2 modulates homotypic and heterotypic platelet interactions by binding to sulfatides. British Journal of Haematology, 2011, 154, 122-133.	1.2	18
18	Structure, Sulfatide Binding Properties, and Inhibition of Platelet Aggregation by a Disabled-2 Protein-derived Peptide. Journal of Biological Chemistry, 2012, 287, 37691-37702.	1.6	17

#	Article	IF	CITATIONS
19	A Kármán–Howarth–Monin equation for variable-density turbulence. Journal of Fluid Mechanics, 2018, 843, 382-418.	1.4	17
20	Assessment of Left Ventricular Diastolic Function Using 4-Dimensional Phase-Contrast Cardiac Magnetic Resonance. Journal of Computer Assisted Tomography, 2011, 35, 108-112.	0.5	11
21	Understanding the transport and break up of reactive ejecta. Physica D: Nonlinear Phenomena, 2021, 415, 132787.	1.3	10
22	Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier–Mellin cross-correlation. Measurement Science and Technology, 2015, 26, 035301.	1.4	9
23	A Scaling Parameter for Predicting Pressure Wave Reflection in Stented Arteries. Journal of Medical Devices, Transactions of the ASME, 2009, 3, .	0.4	6
24	Multispectral processing for color particle image velocimetry. Microfluidics and Nanofluidics, 2014, 17, 729-743.	1.0	5
25	Accuracy of volumetric flow rate inflow/outflow measurement by integrating PIV velocity fields. Measurement Science and Technology, 2020, 31, 115303.	1.4	5
26	Windowed Fourier transform and cross-correlation algorithms for molecular tagging velocimetry. Measurement Science and Technology, 2020, 31, 074007.	1.4	4
27	Studies of reactive and nonreactive metals–ejecta–transporting nonreactive and reactive gases and vacuum. AIP Conference Proceedings, 2020, , .	0.3	3
28	Liquid Entrainment by Round Turbulent Gas Jets Submerged in Water. , 2011, , .		2
29	The temperatures of ejecta transporting in vacuum and gases. Journal of Applied Physics, 2022, 131, 195104.	1.1	2
30	A Time Resolved DPIV In-Vitro Evaluation of Coronary Stents in Realistic Conditions: Part I $\hat{a} \in$ " Influence of Stent Configuration. , 2008, , .		1
31	Estimation of Uncertainty Bounds From Cross Correlation Peak Ratio for Individual PIV Measurements. , 2012, , .		1
32	Proton radiography of explosively dispersed metal particles with varying volume fraction and varying carrier phase. Shock Waves, 2021, 31, 75-88.	1.0	1
33	Beyond Taylor's hypothesis: a novel volumetric reconstruction of velocity and density fields for variable†density and shear flows. Experiments in Fluids, 2021, 62, 1.	1.1	1
34	Improvements to the Dynamic Range of Velocity Measurements Using DPIV., 2006,,.		1
35	On the Dynamics of Active Flow Control Over a Separated Airfoil Using Leading Edge Unsteady Blowing. , 2006, , 21.		0
36	Phase Correlation Processing for DPIV Measurements: Part I â€" Spatial Domain Analysis. , 2007, , .		0

#	Article	IF	Citations
37	1100 Phase contrast imaging: a novel way of assessing left ventricular diastolic function. Journal of Cardiovascular Magnetic Resonance, $2008,10,.$	1.6	O
38	A Time Resolved DPIV In-Vitro Evaluation of Coronary Stents in Realistic Conditions: Part II $\hat{a} \in$ Effect of Stent Design. , 2008, , .		0
39	Investigation of the Relationship Between Color M-Mode Early Diastolic Propagation Velocity and Left Ventricular Adverse Pressure Gradients. , 2010, , .		O
40	A Relationship Between Pressure Fields and Flow Patterns During Left Ventricular Diastolic Dysfunction Using 2D Phase Contrast MRI. , 2010, , .		0
41	Impaired Dobutamine Augmentation of Early Diastolic Suction in Diastolic Dysfunction. Journal of Cardiac Failure, 2011, 17, S7.	0.7	0
42	Estimation of Left Ventricular Wall Stiffness by Analysis of Late Diastolic Pressure Components. , 2011,		0
43	Left Ventricular Systolic Circumferential Deformation is Associated with Left Ventricular Diastolic Apical Suction. Journal of Cardiac Failure, 2013, 19, S170.	0.7	0
44	A Numerical and Experimental Analysis of Cardiovascular Stent Design Considerations. , 2003, , .		0
45	Phase Correlation Processing for DPIV Measurements: Part II — Spectral Domain Analysis. , 2007, , .		0
46	Time-Accurate Measurement of Pressure From Particle Image Velocimetry Data (Keynote)., 2007,,.		0
47	Robust Gradient Estimation Schemes Using Radial Basis Functions. , 2008, , .		0
48	Time Resolved DPIV in a Transonic Turbine Cascade. , 2008, , .		0
49	A Hydrodynamic Efficiency Parameter as a Novel Left Ventricular Diastolic Dysfunction Diagnostic Metric. , 2008, , .		0
50	A Novel Break Point Parameter as a Diagnostic Tool for Left Ventricular Diastolic Dysfunction. , 2008,		0
51	Left Ventricular Vortex Ring Dynamics and Their Association to Early Diastolic Filling. , 2011, , .		O