Martin S A Blackwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/258443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of drying and simulated flooding on soil phosphorus dynamics from two contrasting <scp>UK</scp> grassland soils. European Journal of Soil Science, 2022, 73, .	1.8	13
2	Soil methane (CH ₄) fluxes in cropland with permanent pasture and riparian buffer strips with different vegetation [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 132-144.	1.1	5
3	Riparian buffer strips influence nitrogen losses as nitrous oxide and leached N from upslope permanent pasture. Agriculture, Ecosystems and Environment, 2022, 336, 108031.	2.5	3
4	The effect of soil organic matter on long-term availability of phosphorus in soil: Evaluation in a biological P mining experiment. Geoderma, 2022, 423, 115965.	2.3	4
5	A review of phosphate oxygen isotope values in global bedrocks: Characterising a critical endmember to the soil phosphorus system. Journal of Plant Nutrition and Soil Science, 2021, 184, 25-34.	1.1	10
6	Soil microbial biomass phosphorus can serve as an index to reflect soil phosphorus fertility. Biology and Fertility of Soils, 2021, 57, 657-669.	2.3	27
7	Cycling of reduced phosphorus compounds in soil and potential impacts of climate change. European Journal of Soil Science, 2021, 72, 2517-2537.	1.8	13
8	Investigation of the soil properties that affect Olsen P critical values in different soil types and impact on P fertiliser recommendations. European Journal of Soil Science, 2021, 72, 1802-1816.	1.8	12
9	A rapid ammonium fluoride method to determine the oxygen isotope ratio of available phosphorus in tropical soils. Rapid Communications in Mass Spectrometry, 2020, 34, e8647.	0.7	6
10	Using a meta-analysis approach to understand complexity in soil biodiversity and phosphorus acquisition in plants. Soil Biology and Biochemistry, 2020, 142, 107695.	4.2	22
11	The Mineral Composition of Wild-Type and Cultivated Varieties of Pasture Species. Agronomy, 2020, 10, 1463.	1.3	12
12	Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. Journal of Soils and Sediments, 2020, 20, 4160-4193.	1.5	124
13	Elucidating three-way interactions between soil, pasture and animals that regulate nitrous oxide emissions from temperate grazing systems. Agriculture, Ecosystems and Environment, 2020, 300, 106978.	2.5	18
14	Changes of oxygen isotope values of soil P pools associated with changes in soil pH. Scientific Reports, 2020, 10, 2065.	1.6	6
15	Simulation of Phosphorus Chemistry, Uptake and Utilisation by Winter Wheat. Plants, 2019, 8, 404.	1.6	11
16	Fertilizer produced from abattoir waste can contribute to phosphorus sustainability, and biofortify crops with minerals. PLoS ONE, 2019, 14, e0221647.	1.1	19
17	Microbial Biomass Responses to Soil Drying-Rewetting and Phosphorus Leaching. Frontiers in Environmental Science, 2019, 7, .	1.5	18
18	Responses of carbon, nitrogen and phosphorus to two consecutive drying–rewetting cycles in soils. Journal of Plant Nutrition and Soil Science, 2019, 182, 217-228.	1.1	18

MARTIN S A BLACKWELL

#	Article	IF	CITATIONS
19	Simultaneous Quantification of Soil Phosphorus Labile Pool and Desorption Kinetics Using DGTs and 3D-DIFS. Environmental Science & Technology, 2019, 53, 6718-6728.	4.6	23
20	Phosphorus use efficiency and fertilizers: future opportunities for improvements. Frontiers of Agricultural Science and Engineering, 2019, 6, 332.	0.9	40
21	The stable oxygen isotope ratio of resin extractable phosphate derived from fresh cattle faeces. Rapid Communications in Mass Spectrometry, 2018, 32, 703-710.	0.7	6
22	Phosphorus acquisition by citrate―and phytaseâ€exuding <scp><i>Nicotiana tabacum</i></scp> plant mixtures depends on soil phosphorus availability and root intermingling. Physiologia Plantarum, 2018, 163, 356-371.	2.6	35
23	Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific Acid phosphatase Gene diversity and abundance. Plant and Soil, 2018, 427, 175-189.	1.8	34
24	Impact of microbial activity on the leaching of soluble N forms in soil. Biology and Fertility of Soils, 2018, 54, 21-25.	2.3	5
25	Root development impacts on the distribution of phosphatase activity: Improvements in quantification using soil zymography. Soil Biology and Biochemistry, 2018, 116, 158-166.	4.2	40
26	Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant and Soil, 2018, 427, 191-208.	1.8	145
27	Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant and Soil, 2018, 427, 5-16.	1.8	191
28	Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability. Plant and Soil, 2018, 427, 125-138.	1.8	46
29	Does the combination of citrate and phytase exudation in Nicotiana tabacum promote the acquisition of endogenous soil organic phosphorus?. Plant and Soil, 2017, 412, 43-59.	1.8	25
30	Linking the depletion of rhizosphere phosphorus to the heterologous expression of a fungal phytase in Nicotiana tabacum as revealed by enzyme-labile P and solution 31P NMR spectroscopy. Rhizosphere, 2017, 3, 82-91.	1.4	12
31	The oxygen isotopic composition of phosphate in river water and its potential sources in the Upper River Taw catchment, UK. Science of the Total Environment, 2017, 574, 680-690.	3.9	50
32	Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source. Plant Science, 2017, 255, 12-28.	1.7	41
33	Phosphate stable oxygen isotope variability within a temperate agricultural soil. Geoderma, 2017, 285, 64-75.	2.3	29
34	Morphological responses of wheat (<i>Triticum aestivum</i> L.) roots to phosphorus supply in two contrasting soils. Journal of Agricultural Science, 2016, 154, 98-108.	0.6	25
35	Organic Acids Regulation of Chemical–Microbial Phosphorus Transformations in Soils. Environmental Science & Technology, 2016, 50, 11521-11531.	4.6	102
36	The <scp>N</scp> orth <scp>W</scp> yke <scp>F</scp> arm <scp>P</scp> latform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics. European Journal of Soil Science, 2016, 67, 374-385.	1.8	81

MARTIN S A BLACKWELL

#	Article	IF	CITATIONS
37	Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis. Geoderma, 2016, 284, 93-102.	2.3	47
38	A Holistic Approach to Understanding the Desorption of Phosphorus in Soils. Environmental Science & Technology, 2016, 50, 3371-3381.	4.6	71
39	Short-term biotic removal of dissolved organic nitrogen (DON) compounds from soil solution and subsequent mineralisation in contrasting grassland soils. Soil Biology and Biochemistry, 2016, 96, 82-85.	4.2	14
40	Combined Applications of Nitrogen and Phosphorus Fertilizers with Manure Increase Maize Yield and Nutrient Uptake via Stimulating Root Growth in a Long-Term Experiment. Pedosphere, 2016, 26, 62-73.	2.1	93
41	Dissolved Phosphorus Retention in Buffer Strips: Influence of Slope and Soil Type. Journal of Environmental Quality, 2015, 44, 1216-1224.	1.0	16
42	The importance of soil drying and re-wetting in crop phytohormonal and nutritional responses to deficit irrigation. Journal of Experimental Botany, 2015, 66, 2239-2252.	2.4	103
43	Fertilization and Catch Crop Strategies for Improving Tomato Production in North China. Pedosphere, 2015, 25, 364-371.	2.1	11
44	A Meta-Analysis of Organic and Inorganic Phosphorus in Organic Fertilizers, Soils, and Water: Implications for Water Quality. Critical Reviews in Environmental Science and Technology, 2014, 44, 2172-2202.	6.6	79
45	Microbial biomass phosphorus contributions to phosphorus solubility in riparian vegetated buffer strip soils. Biology and Fertility of Soils, 2013, 49, 1237-1241.	2.3	15
46	Variations in concentrations of N and P forms in leachates from dried soils rewetted at different rates. Biology and Fertility of Soils, 2013, 49, 79-87.	2.3	39
47	Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils. Geobiology, 2013, 11, 252-267.	1.1	32
48	Isolating the influence of <scp>pH</scp> on the amounts and forms of soil organic phosphorus. European Journal of Soil Science, 2013, 64, 249-259.	1.8	81
49	Contemporary fineâ€grained bed sediment sources across the River Wensum Demonstration Test Catchment, UK. Hydrological Processes, 2013, 27, 857-884.	1.1	43
50	Advances in the understanding of nutrient dynamics and management in UK agriculture. Science of the Total Environment, 2012, 434, 39-50.	3.9	101
51	Recovering Phosphorus from Soil: A Root Solution?. Environmental Science & Technology, 2012, 46, 1977-1978.	4.6	116
52	Ecosystem services delivered by small-scale wetlands. Hydrological Sciences Journal, 2011, 56, 1467-1484.	1.2	71
53	Nitrous oxide emissions from small-scale farmland features of UK livestock farming systems. Agriculture, Ecosystems and Environment, 2010, 136, 192-198.	2.5	28
54	Nitrous oxide production and denitrification rates in estuarine intertidal saltmarsh and managed realignment zones. Estuarine, Coastal and Shelf Science, 2010, 87, 591-600.	0.9	34

MARTIN S A BLACKWELL

#	Article	IF	CITATIONS
55	Phosphorus Solubilization and Potential Transfer to Surface Waters from the Soil Microbial Biomass Following Drying–Rewetting and Freezing–Thawing. Advances in Agronomy, 2010, 106, 1-35.	2.4	115
56	Interactions Among Agricultural Production and Other Ecosystem Services Delivered from European Temperate Grassland Systems. Advances in Agronomy, 2010, 109, 117-154.	2.4	62
57	Significance of Rootâ€Attached Soil and Soil Preparation for Microbial Biomass Phosphorus Measurement. Soil Science Society of America Journal, 2009, 73, 1861-1863.	1.2	3
58	Effects of soil drying and rate of re-wetting on concentrations and forms of phosphorus in leachate. Biology and Fertility of Soils, 2009, 45, 635-643.	2.3	73
59	Influence of flooding onÎ′15N,Î′18O,1Î′15N and2Î′15N signatures of N2O released from estuarine soils—a laboratory experiment using tidal flooding chambers. Rapid Communications in Mass Spectrometry, 2004, 18, 1561-1568.	0.7	27