
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping-by-Sequencing of Point and Insertional Mutations with Easymap. Methods in Molecular Biology, 2022, 2484, 343-361.	0.9	3
2	Easymap: A User-Friendly Software Package for Rapid Mapping-by-Sequencing of Point Mutations and Large Insertions. Frontiers in Plant Science, 2021, 12, 655286.	3.6	10
3	The m6A RNA Demethylase ALKBH9B Plays a Critical Role for Vascular Movement of Alfalfa Mosaic Virus in Arabidopsis. Frontiers in Microbiology, 2021, 12, 745576.	3.5	16
4	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	1.9	13
5	A cornucopia of mutants for understanding plant embryo development. New Phytologist, 2020, 226, 289-291.	7.3	1
6	Next-generation forward genetic screens: using simulated data to improve the design of mapping-by-sequencing experiments in Arabidopsis. Nucleic Acids Research, 2019, 47, e140-e140.	14.5	10
7	A Network-Guided Genetic Approach to Identify Novel Regulators of Adventitious Root Formation in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 461.	3.6	15
8	Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. Journal of Experimental Botany, 2018, 69, 2569-2579.	4.8	60
9	Regulation of Hormonal Control, Cell Reprogramming, and Patterning during De Novo Root Organogenesis. Plant Physiology, 2018, 176, 1709-1727.	4.8	94
10	Arabidopsis mTERF6 is required for leaf patterning. Plant Science, 2018, 266, 117-129.	3.6	14
11	Members of the DEAL subfamily of the DUF1218 gene family are required for bilateral symmetry but not for dorsoventrality in Arabidopsis leaves. New Phytologist, 2018, 217, 1307-1321.	7.3	22
12	A genetic link between epigenetic repressor AS1–AS2 and DNA replication factors in establishment of adaxial–abaxial leaf polarity of <i>Arabidopsis</i> . Plant Biotechnology, 2018, 35, 39-49.	1.0	8
13	The 2OGD Superfamily: Emerging Functions in Plant Epigenetics and Hormone Metabolism. Molecular Plant, 2018, 11, 1222-1224.	8.3	17
14	The Arabidopsis <i>phyB-9</i> Mutant Has a Second-Site Mutation in the <i>VENOSA4</i> Gene That Alters Chloroplast Size, Photosynthetic Traits, and Leaf Growth. Plant Physiology, 2018, 178, 3-6.	4.8	32
15	A Suppressor Screen for AGO1 Degradation by the Viral F-Box P0 Protein Uncovers a Role for AGO DUF1785 in sRNA Duplex Unwinding. Plant Cell, 2018, 30, 1353-1374.	6.6	44
16	ABCE Proteins: From Molecules to Development. Frontiers in Plant Science, 2018, 9, 1125.	3.6	26
17	<i>INCURVATA11</i> and <i>CUPULIFORMIS2</i> Are Redundant Genes That Encode Epigenetic Machinery Components in Arabidopsis. Plant Cell, 2018, 30, 1596-1616.	6.6	20
18	The ANGULATA 7 gene encodes a DnaJâ€like zinc fingerâ€domain protein involved in chloroplast function and leaf development in Arabidopsis. Plant Journal, 2017, 89, 870-884.	5.7	25

#	Article	IF	CITATIONS
19	Deficient glutamate biosynthesis triggers a concerted upregulation of ribosomal protein genes in Arabidopsis. Scientific Reports, 2017, 7, 6164.	3.3	9
20	Suitability of two distinct approaches for the high-throughput study of the post-embryonic effects of embryo-lethal mutations in Arabidopsis. Scientific Reports, 2017, 7, 17010.	3.3	3
21	DRACULA2, a dynamic nucleoporin with a role in the regulation of the shade avoidance syndrome in Arabidopsis. Development (Cambridge), 2016, 143, 1623-31.	2.5	25
22	ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2768-2773.	7.1	37
23	Plastid control of abaxial-adaxial patterning. Scientific Reports, 2015, 5, 15975.	3.3	17
24	The KnownLeaf literature curation system captures knowledge about Arabidopsis leaf growth and development and facilitates integrated data mining. Current Plant Biology, 2015, 2, 1-11.	4.7	7
25	Arabidopsis INCURVATA2 Regulates Salicylic Acid and Abscisic Acid Signaling, and Oxidative Stress Responses. Plant and Cell Physiology, 2015, 56, pcv132.	3.1	6
26	Getting started in mappingâ€byâ€sequencing. Journal of Integrative Plant Biology, 2015, 57, 606-612.	8.5	28
27	Mutations in the plantâ€conserved <scp>MTERF9</scp> alter chloroplast gene expression, development and tolerance to abiotic stress in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2015, 154, 297-313.	5.2	46
28	Rapid identification of angulata leaf mutations using next-generation sequencing. Planta, 2014, 240, 1113-1122.	3.2	15
29	Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development. Journal of Experimental Botany, 2014, 65, 2391-2404.	4.8	13
30	The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953.	5.7	104
31	Symmetry, asymmetry, and the cell cycle in plants: known knowns and some known unknowns. Journal of Experimental Botany, 2014, 65, 2645-2655.	4.8	11
32	Multiâ€gene silencing in Arabidopsis: a collection of artificial micro <scp>RNA</scp> s targeting groups of paralogs encoding transcription factors. Plant Journal, 2014, 80, 149-160.	5.7	27
33	AGO1 controls arabidopsis inflorescence architecture possibly by regulating TFL1 expression. Annals of Botany, 2014, 114, 1471-1481.	2.9	23
34	Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. Plant Journal, 2014, 79, 878-891.	5.7	46
35	Combined haploinsufficiency and purifying selection drive retention of RPL36a paralogs in Arabidopsis. Scientific Reports, 2014, 4, 4122.	3.3	40
36	<i>incurvata13</i> , a Novel Allele of <i>AUXIN RESISTANT6</i> , Reveals a Specific Role for Auxin and the SCF Complex in Arabidopsis Embryogenesis, Vascular Specification, and Leaf Flatness Â. Plant Physiology, 2013, 161, 1303-1320.	4.8	28

#	Article	IF	CITATIONS
37	Functional Redundancy and Divergence within the Arabidopsis RETICULATA-RELATED Gene Family Â. Plant Physiology, 2013, 162, 589-603.	4.8	50
38	Mutation of an Arabidopsis NatB N-Alpha-Terminal Acetylation Complex Component Causes Pleiotropic Developmental Defects. PLoS ONE, 2013, 8, e80697.	2.5	42
39	PORPHOBILINOGEN DEAMINASE Deficiency Alters Vegetative and Reproductive Development and Causes Lesions in Arabidopsis. PLoS ONE, 2013, 8, e53378.	2.5	35
40	Arabidopsis TRANSCURVATA1 Encodes NUP58, a Component of the Nucleopore Central Channel. PLoS ONE, 2013, 8, e67661.	2.5	20
41	The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis. Plant and Cell Physiology, 2012, 53, 1322-1333.	3.1	35
42	Ribosomes and translation in plant developmental control. Plant Science, 2012, 191-192, 24-34.	3.6	118
43	Arabidopsis MDA1, a Nuclear-Encoded Protein, Functions in Chloroplast Development and Abiotic Stress Responses. PLoS ONE, 2012, 7, e42924.	2.5	70
44	Unveiling Plant mTERF Functions. Molecular Plant, 2012, 5, 294-296.	8.3	22
45	Cell Expansion-Mediated Organ Growth Is Affected by Mutations in Three EXIGUA Genes. PLoS ONE, 2012, 7, e36500.	2.5	28
46	Uncovering the post-embryonic functions of gametophytic- and embryonic-lethal genes. Trends in Plant Science, 2011, 16, 336-345.	8.8	25
47	Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of <i>Arabidopsis</i> mutants. Plant, Cell and Environment, 2011, 34, 2200-2211.	5.7	36
48	Differential contributions of ribosomal protein genes to <i>Arabidopsis thaliana</i> leaf development. Plant Journal, 2011, 65, 724-736.	5.7	147
49	Arabidopsis <i>RUGOSA2</i> encodes an mTERF family member required for mitochondrion, chloroplast and leaf development. Plant Journal, 2011, 68, 738-753.	5.7	79
50	Analysis of <i>ven3</i> and <i>ven6</i> reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development. Plant Journal, 2011, 65, 335-345.	5.7	64
51	The <i>RON1/FRY1/SAL1</i> Gene Is Required for Leaf Morphogenesis and Venation Patterning in Arabidopsis. Plant Physiology, 2010, 152, 1357-1372.	4.8	91
52	QTL analysis of leaf architecture. Journal of Plant Research, 2010, 123, 15-23.	2.4	31
53	The ang3 mutation identified the ribosomal protein gene RPL5B with a role in cell expansion during organ growth. Physiologia Plantarum, 2010, 138, 91-101.	5.2	15
54	Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three Arabidopsis Accessions Cultivated in Ten Laboratories Â. Plant Physiology, 2010, 152, 2142-2157.	4.8	137

#	Article	IF	CITATIONS
55	A Role for AUXIN RESISTANT3 in the Coordination of Leaf Growth. Plant and Cell Physiology, 2010, 51, 1661-1673.	3.1	48
56	Lessons from a search for leaf mutants in Arabidopsis thaliana. International Journal of Developmental Biology, 2009, 53, 1623-1634.	0.6	36
57	Leaf development: time to turn over a new leaf?. Current Opinion in Plant Biology, 2009, 12, 9-16.	7.1	63
58	Understanding synergy in genetic interactions. Trends in Genetics, 2009, 25, 368-376.	6.7	114
59	Coordination of cell proliferation and cell expansion mediated by ribosomeâ€related processes in the leaves of <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 59, 499-508.	5.7	162
60	The <i>ABA1</i> gene and carotenoid biosynthesis are required for late skotomorphogenic growth in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2008, 31, 227-234.	5.7	37
61	Mutational spaces for leaf shape and size. HFSP Journal, 2008, 2, 110-120.	2.5	45
62	Role ofHEMIVENATAand the Ubiquitin Pathway in Venation Pattern Formation. Plant Signaling and Behavior, 2007, 2, 258-259.	2.4	5
63	The Arabidopsis thaliana Homolog of Yeast BRE1 Has a Function in Cell Cycle Regulation during Early Leaf and Root Growth. Plant Cell, 2007, 19, 417-432.	6.6	168
64	Visualization of Gene Expression by Fluorescent Multiplex Reverse Transcriptase-PCR Amplification. , 2007, 353, 143-152.		0
65	<i>INCURVATA2</i> Encodes the Catalytic Subunit of DNA Polymerase α and Interacts with Genes Involved in Chromatin-Mediated Cellular Memory in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 2822-2838.	6.6	131
66	The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 2007, 448, 666-671.	27.8	1,974
67	Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant, Cell and Environment, 2006, 29, 2000-2008.	5.7	203
68	Low-Resolution Mapping of Untagged Mutations. , 2006, 323, 105-114.		30
69	Mutations in the RETICULATA gene dramatically alter internal architecture but have little effect on overall organ shape in Arabidopsis leaves. Journal of Experimental Botany, 2006, 57, 3019-3031.	4.8	52
70	The SCABRA3 Nuclear Gene Encodes the Plastid RpoTp RNA Polymerase, Which Is Required for Chloroplast Biogenesis and Mesophyll Cell Proliferation in Arabidopsis. Plant Physiology, 2006, 141, 942-956.	4.8	134
71	The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis. Development (Cambridge), 2006, 133, 3755-3766.	2.5	58
72	Mutations in the MicroRNA Complementarity Site of the INCURVATA4 Gene Perturb Meristem Function and Adaxialize Lateral Organs in Arabidopsis. Plant Physiology, 2006, 141, 607-619.	4.8	88

#	Article	IF	CITATIONS
73	Quantitative trait loci mapping of floral and leaf morphology traits inArabidopsis thaliana: evidence for modular genetic architecture. Evolution & Development, 2005, 7, 259-271.	2.0	108
74	A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. Journal of Experimental Botany, 2005, 56, 2071-2083.	4.8	208
75	The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7754-7759.	7.1	154
76	Preface - Plants develop and grow. International Journal of Developmental Biology, 2005, 49, 449-452.	0.6	1
77	The ULTRACURVATA2 Gene of Arabidopsis Encodes an FK506-Binding Protein Involved in Auxin and Brassinosteroid Signaling. Plant Physiology, 2004, 134, 101-117.	4.8	112
78	The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis. Journal of Experimental Botany, 2004, 55, 1529-1539.	4.8	82
79	The Short-Chain Alcohol Dehydrogenase ABA2 Catalyzes the Conversion of Xanthoxin to Abscisic Aldehyde[W]. Plant Cell, 2002, 14, 1833-1846.	6.6	435
80	Genetic Architecture of NaCl Tolerance in Arabidopsis. Plant Physiology, 2002, 130, 951-963.	4.8	143
81	The UCU1 Arabidopsis Gene Encodes a SHAGGY/GSK3-like Kinase Required for Cell Expansion along the Proximodistal Axis. Developmental Biology, 2002, 242, 161-173.	2.0	174
82	Genetic Analysis of Natural Variations in the Architecture of <i>Arabidopsis thaliana</i> Vegetative Leaves. Genetics, 2002, 162, 893-915.	2.9	90
83	Genome-wide linkage analysis of Arabidopsis genes required for leaf development. Molecular Genetics and Genomics, 2001, 266, 12-19.	2.1	46
84	A multiplex reverse transcriptase-polymerase chain reaction method for fluorescence-based semiautomated detection of gene expression in Arabidopsis thaliana. Planta, 2000, 211, 606-608.	3.2	12
85	Genetic Analysis of Salt-Tolerant Mutants in Arabidopsis thaliana. Genetics, 2000, 154, 421-436.	2.9	158
86	Genetic Analysis of incurvata Mutants Reveals Three Independent Genetic Operations at Work in Arabidopsis Leaf Morphogenesis. Genetics, 2000, 156, 1363-1377.	2.9	91
87	Molecular characterization and phylogenetic analysis of SpBMP5-7, a new member of the TGF-beta superfamily expressed in sea urchin embryos. Molecular Biology and Evolution, 1999, 16, 634-645.	8.9	23
88	Genetic analysis of leaf form mutants from the Arabidopsis Information Service collection. Molecular Genetics and Genomics, 1999, 261, 725-739.	2.4	92
89	High-throughput genetic mapping in Arabidopsis thaliana. Molecular Genetics and Genomics, 1999, 261, 408-415.	2.4	90
90	OTCandAUL1, two convergent and overlapping genes in the nuclear genome ofArabidopsis thaliana. FEBS Letters, 1999, 461, 101-106.	2.8	52

#	Article	IF	CITATIONS
91	Venation Pattern Formation inArabidopsis thalianaVegetative Leaves. Developmental Biology, 1999, 205, 205-216.	2.0	158
92	A Mutational Analysis of Leaf Morphogenesis in Arabidopsis thaliana. Genetics, 1999, 152, 729-742.	2.9	162
93	Rapid discrimination of sequences flanking and within T-DNA insertions in theArabidopsisgenome. Plant Journal, 1998, 14, 497-501.	5.7	77
94	A genetic analysis ofbx bxd cis double mutants in theDrosophila Ultrabithorax gene. Molecular Genetics and Genomics, 1996, 250, 540-546.	2.4	3
95	A genetic analysis of. Molecular Genetics and Genomics, 1996, 250, 540.	2.4	1
96	Two computer programs for the generation of problems in transmission genetics for teaching purposes. Bioinformatics, 1992, 8, 603-604.	4.1	1
97	PCR amplification of long DNA fragments. Nucleic Acids Research, 1992, 20, 623-623.	14.5	117
98	Positive and negative cis-regulatory elements in the bithoraxoid region of the Drosophila Ultrabithorax gene. Molecular Genetics and Genomics, 1992, 234, 177-184.	2.4	16
99	Developmental genetic analysis of Contrabithorax mutations in Drosophila melanogaster Genetics, 1990, 126, 139-155.	2.9	34
100	Genetic analysis of "transvection" effects involving contrabithorax mutations in Drosophila melanogaster Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1146-1150.	7.1	33
101	A method for the selection of mutants of Phycomyces blakesleeanus defective in germination. Current Genetics, 1986, 10, 749-753.	1.7	2
102	Characterization of Phycomyces blakesleeanus mutants temperature-sensitive for heat-shock induced germination. Current Genetics, 1986, 10, 755-760.	1.7	5