List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584207/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Biological Invasions by Exotic Grasses, the Grass/Fire Cycle, and Global Change. Annual Review of Ecology, Evolution, and Systematics, 1992, 23, 63-87.	6.7	2,551
2	Fire in the Earth System. Science, 2009, 324, 481-484.	6.0	2,330
3	Effects of Invasive Alien Plants on Fire Regimes. BioScience, 2004, 54, 677.	2.2	1,193
4	The human dimension of fire regimes on Earth. Journal of Biogeography, 2011, 38, 2223-2236.	1.4	845
5	Exotic Plant Species as Problems and Solutions in Ecological Restoration: A Synthesis. Restoration Ecology, 2002, 10, 703-713.	1.4	648
6	Forecasting Biological Invasions with Increasing International Trade. Conservation Biology, 2003, 17, 322-326.	2.4	596
7	Introduced annual grass increases regional fire activity across the arid western <scp>USA</scp> (1980–2009). Global Change Biology, 2013, 19, 173-183.	4.2	521
8	Will extreme climatic events facilitate biological invasions?. Frontiers in Ecology and the Environment, 2012, 10, 249-257.	1.9	402
9	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	13.7	355
10	COMPETITION BETWEEN NATIVE PERENNIAL AND EXOTIC ANNUAL GRASSES: IMPLICATIONS FOR AN HISTORICAL INVASION. Ecology, 2004, 85, 1273-1283.	1.5	320
11	Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment, 2012, 10, 20-28.	1.9	195
12	The response of native species to removal of invasive exotic grasses in a seasonally dry Hawaiian woodland. Journal of Vegetation Science, 1998, 9, 699-712.	1.1	172
13	Plant invasions — the role of mutualisms. Biological Reviews, 2000, 75, 65-93.	4.7	165
14	Boomâ€bust dynamics in biological invasions: towards an improved application of the concept. Ecology Letters, 2017, 20, 1337-1350.	3.0	143
15	Can Carbon Addition Increase Competitiveness of Native Grasses? A Case Study from California. Restoration Ecology, 2004, 12, 36-43.	1.4	125
16	Self-reinforcing impacts of plant invasions change over time. Nature, 2013, 503, 517-520.	13.7	122
17	Fire as a Restoration Tool: A Decision Framework for Predicting the Control or Enhancement of Plants Using Fire. Restoration Ecology, 2010, 18, 274-284.	1.4	120
18	Summer water use by California coastal prairie grasses: fog, drought, and community composition. Oecologia, 2005, 145, 511-521.	0.9	119

2

#	Article	IF	CITATIONS
19	EXOTIC GRASSES ALTER CONTROLS OVER SOIL NITROGEN DYNAMICS IN A HAWAIIAN WOODLAND. , 2003, 13, 154-166.		114
20	SOIL HETEROGENEITY AND PLANT COMPETITION IN ANANNUAL GRASSLAND. Ecology, 1997, 78, 2076-2090.	1.5	99
21	FACTORS INFLUENCING DYNAMICS OF TWO INVASIVE C4GRASSES IN SEASONALLY DRY HAWAIIAN WOODLANDS. Ecology, 2001, 82, 89-104.	1.5	96
22	Long-term impacts of invasive grasses and subsequent fire in seasonally dry Hawaiian woodlands. , 2011, 21, 1617-1628.		95
23	Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in Hawaii. Austral Ecology, 2000, 25, 507-522.	0.7	94
24	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	3.0	88
25	California native and exotic perennial grasses differ in their response to soil nitrogen, exotic annual grass density, and order of emergence. Plant Ecology, 2009, 201, 445-456.	0.7	87
26	FRUIT CHOICE AND SEED DISPERSAL OF INVASIVE VS. NONINVASIVECARPOBROTUS(AIZOACEAE) IN COASTAL CALIFORNIA. Ecology, 1998, 79, 1053-1060.	1.5	76
27	Exotic grass invasion alters potential rates of N fixation in Hawaiian woodlands. Oecologia, 1998, 113, 179-187.	0.9	67
28	Germination and growth responses of hybridizing Carpobrotus species (Aizoaceae) from coastal California to soil salinity. American Journal of Botany, 1999, 86, 1257-1263.	0.8	65
29	Native and exotic plant species respond differently to wildfire and prescribed fire as revealed by metaâ€analysis. Journal of Vegetation Science, 2015, 26, 102-113.	1.1	65
30	The effect of soil nitrogen on competition between native and exotic perennial grasses from northern coastal California. Plant Ecology, 2006, 186, 23-35.	0.7	59
31	Hybridization and introgression in Carpobrotus spp. (Aizoaceae) in California. I. Morphological evidence. American Journal of Botany, 1997, 84, 896-904.	0.8	57
32	Depth of water acquisition by invading shrubs and resident herbs in a Sierra Nevada meadow. Plant and Soil, 2006, 285, 31-43.	1.8	56
33	Microclimate Change and Effect on Fire Following Forest-Grass Conversion in Seasonally Dry Tropical Woodland1. Biotropica, 1998, 30, 286-297.	0.8	53
34	ALTERATION OF ECOSYSTEM NITROGEN DYNAMICS BY EXOTIC PLANTS: A CASE STUDY OF C4GRASSES IN HAWAII. , 2001, 11, 1323-1335.		51
35	How much do phenotypic plasticity and local genetic variation contribute to phenotypic divergences along environmental gradients in widespread invasive plants? A metaâ€analysis. Oikos, 2016, 125, 905-917.	1.2	51
36	Pyrogeography, historical ecology, and the human dimensions of fire regimes. Journal of Biogeography, 2014, 41, 833-836.	1.4	47

#	Article	IF	CITATIONS
37	SHRUB EXPANSION IN MONTANE MEADOWS: THE INTERACTION OF LOCAL-SCALE DISTURBANCE AND SITE ARIDITY. , 2002, 12, 1103-1118.		46
38	Not novel, just better: competition between native and non-native plants in California grasslands that share species traits. Plant Ecology, 2010, 209, 71-81.	0.7	46
39	The Effects of Exotic Grasses on Litter Decomposition in a Hawaiian Woodland: The Importance of Indirect Effects. Ecosystems, 2003, 6, 723-738.	1.6	45
40	Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands. PLoS ONE, 2014, 9, e110637.	1.1	45
41	Hybridization and introgression in Carpobrotus spp. (Aizoaceae) in California II. Allozyme evidence. American Journal of Botany, 1997, 84, 905-911.	0.8	41
42	Title is missing!. Plant Ecology, 2003, 167, 31-43.	0.7	41
43	Cellular and extracellular C contributions to respiration after wetting dry soil. Biogeochemistry, 2020, 147, 307-324.	1.7	38
44	Fitness of invasive <i>Carpobrotus</i> (Aizoaceae) hybrids in coastal California. Ecoscience, 1998, 5, 191-199.	0.6	36
45	Keys to enhancing the value of invasion ecology research for management. Biological Invasions, 2020, 22, 2431-2445.	1.2	35
46	Longâ€ŧerm dynamics and impacts of plant invasions. Journal of Ecology, 2017, 105, 1459-1461.	1.9	34
47	Effects of fire and environmental variables on plant structure and composition in grazed salt desert shrublands of the Great Basin (USA). Journal of Arid Environments, 2009, 73, 643-650.	1.2	32
48	Interactions Among Invasive Plants: Lessons from Hawaiâ€~ĩ. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 521-541.	3.8	32
49	HYBRID VIGOR FOR CLONAL GROWTH INCARPOBROTUS(AIZOACEAE) IN COASTAL CALIFORNIA. , 1998, 8, 1196-1205.		31
50	Structural, compositional and trait differences between native†and nonâ€nativeâ€dominated grassland patches. Functional Ecology, 2014, 28, 745-754.	1.7	31
51	Non-Additive Effects on Decomposition from Mixing Litter of the Invasive Mikania micrantha H.B.K. with Native Plants. PLoS ONE, 2013, 8, e66289.	1.1	30
52	RESPONSE OF HERBS TO SHRUB REMOVAL ACROSS NATURAL AND EXPERIMENTAL VARIATION IN SOIL MOISTURE. , 2003, 13, 1375-1387.		29
53	Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest. Oecologia, 2016, 181, 137-148.	0.9	29
54	Factors Regulating Nitrogen Retention During the Early Stages of Recovery from Fire in Coastal Chaparral Ecosystems. Ecosystems, 2016, 19, 910-926.	1.6	29

#	Article	IF	CITATIONS
55	Post-release monitoring in classical biological control of weeds: assessing impact and testing pre-release hypotheses. Current Opinion in Insect Science, 2020, 38, 99-106.	2.2	29
56	Nutrient Limitation to Primary Productivity in a Secondary Savanna in Venezuela1. Biotropica, 2002, 34, 493-501.	0.8	28
57	Ecosystem vs. community recovery 25Âyears after grass invasions and fire in a subtropical woodland. Journal of Ecology, 2017, 105, 1462-1474.	1.9	26
58	Nutrient Limitation in a Fire-derived, Nitrogen-rich Hawaiian Grassland1. Biotropica, 2006, 38, 458-467.	0.8	24
59	Taking the long view on the ecological effects of plant invasions. American Journal of Botany, 2015, 102, 817-818.	0.8	24
60	Mechanisms of influence of invasive grass litter on germination and growth of coexisting species in California. Biological Invasions, 2018, 20, 1881-1897.	1.2	21
61	Where have all the wildflowers gone? The role of exotic grass thatch. Biological Invasions, 2020, 22, 957-968.	1.2	21
62	The influence of soil resources and plant traits on invasion and restoration in a subtropical woodland. Plant Ecology, 2017, 218, 1149-1161.	0.7	19
63	Can local adaptation explain varying patterns of herbivory tolerance in a recently introduced woody plant in North America?. , 2017, 5, cox016.		17
64	Retention of Nitrogen Following Wildfire in a Chaparral Ecosystem. Ecosystems, 2018, 21, 1608-1622.	1.6	16
65	Exotic Grasses Potentially Slow Invasion of an N-fixing Tree into a Hawaiian Woodland. Biological Invasions, 2001, 3, 69-73.	1.2	15
66	Monitoring Post-Fire Recovery of Chaparral and Conifer Species Using Field Surveys and Landsat Time Series. Remote Sensing, 2019, 11, 2963.	1.8	14
67	Abundance and productivity mediate invader effects on nitrogen dynamics in a California grassland. Ecosphere, 2011, 2, art32.	1.0	12
68	Nitrogen increases earlyâ€stage and slows lateâ€stage decomposition across diverse grasslands. Journal of Ecology, 2022, 110, 1376-1389.	1.9	12
69	Long-term Nutrient Fertilization Increased Soil Carbon Storage in California Grasslands. Ecosystems, 2019, 22, 754-766.	1.6	11
70	The importance of nitrogen-fixation for an invader of a coastal California grassland. Biological Invasions, 2011, 13, 1275-1282.	1.2	10
71	Do Tree Canopies Enhance Perennial Grass Restoration in California Oak Savannas?. Restoration Ecology, 2014, 22, 574-581.	1.4	10
72	Spenders versus savers: Climateâ€induced carbon allocation tradeâ€offs in a recently introduced woody plant. Functional Ecology, 2021, 35, 1640-1654.	1.7	9

#	Article	IF	CITATIONS
73	Variation in salinity tolerance and water use strategies in an introduced woody halophyte (<i>Tamarix</i> spp.). Journal of Ecology, 2021, 109, 3807-3817.	1.9	8
74	Effects of young Artemisia rothrockii shrubs on soil moisture, soil nitrogen cycling, and resident herbs. Journal of Vegetation Science, 2008, 19, 23-30.	1.1	6
75	Preferential Associations of Invasive <i>Lantana camara</i> (Verbenaceae) in a Seasonally Dry Hawaiian Woodland. Pacific Science, 2015, 69, 385-397.	0.2	6
76	Capacity for change: three core attributes of adaptive capacity that bolster restoration efficacy. Restoration Ecology, 0, , .	1.4	6
77	Architecture of remnant trees influences native woody plant recruitment in abandoned Hawaiian pastures. Plant Ecology, 2021, 222, 659-667.	0.7	5
78	Episodic defoliation rapidly reduces starch but not soluble sugars in an invasive shrub, Tamarix spp American Journal of Botany, 2021, 108, 1343-1353.	0.8	4
79	Can the impact of canopy trees on soil and understory be altered using litter additions?. Ecological Applications, 2021, , e02477.	1.8	4
80	Factors Influencing Dynamics of Two Invasive C 4 Grasses in Seasonally Dry Hawaiian Woodlands. Ecology, 2001, 82, 89.	1.5	3
81	Mechanisms of severe dieback and mortality in a classically droughtâ€ŧolerant shrubland species () Tj ETQq1 1 0.	784314 rg 0.8	gBŢ /Overla <mark>c</mark> t
82	Salinity driven interactions between plant growth and a biological control agent. Biological Invasions, 2021, 23, 3161-3173.	1.2	3
83	A Tribute to Don Canestro as Insightful Steward of Land and Sea and a Generous Contributor to the Social Good of Natural Reserves. Bulletin of the Ecological Society of America, 2019, 100, e01533.	0.2	Ο