List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo performance of a rare earth free Mg–Zn–Ca alloy manufactured using twin roll casting for potential applications in the cranial and maxillofacial fixation devices. Bioactive Materials, 2022, 12, 85-96.	15.6	10
2	Effect of Mg on dynamic recrystallization of Zn–Mg alloys during room-temperature compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 830, 142243.	5.6	16
3	The characterisation and formation of novel microstructural features in a Tiâ^'Nbâ^'Zrâ^'Moâ^'Sn alloy manufactured by Laser Engineered Net Shaping (LENS). Additive Manufacturing, 2021, 37, 101705.	3.0	5
4	Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques. Journal of Materials Science and Technology, 2021, 65, 38-53.	10.7	26
5	Mechanisms of the Origin of Fine and Non-Dendritic Grains at the Sonotrode–Liquid Metal Interface During Ultrasonic Solidification of Metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2676-2688.	2.2	6
6	Influence of strain rate and crystallographic orientation on dynamic recrystallization of pure Zn during room-temperature compression. Journal of Materials Science and Technology, 2021, 86, 237-250.	10.7	30
7	Investigating the Grain Refinement Mechanisms of Pulsed Electric Current, Ultrasonic and Melt Stirring Solidification of Pure Aluminium. Jom, 2021, 73, 3873-3882.	1.9	5
8	Grain refinement of hypoeutectic Al-7wt.%Si alloy induced by an Al–V–B master alloy. Journal of Alloys and Compounds, 2020, 812, 152022.	5.5	34
9	A comparative study of the role of solute, potent particles and ultrasonic treatment during solidification of pure Mg, Mg–Zn and Mg–Zr alloys. Journal of Magnesium and Alloys, 2020, , .	11.9	23
10	Dynamic recrystallization of pure zinc during high strain-rate compression at ambient temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 784, 139325.	5.6	28
11	Ultrasonic Processing for Structure Refinement: An Overview of Mechanisms and Application of the Interdependence Theory. Materials, 2019, 12, 3187.	2.9	14
12	The Role of Ultrasonically Induced Acoustic Streaming in Developing Fine Equiaxed Grains During the Solidification of an Al-2APct Cu Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5253-5263.	2.2	14
13	Effect of ultrasonic melt treatment on intermetallic phase formation in a manganese-modified Al-17Si-2Fe alloy. Journal of Materials Processing Technology, 2019, 271, 346-356.	6.3	20
14	Mechanisms of Grain Formation During Ultrasonic Solidification of Commercial Purity Magnesium. Minerals, Metals and Materials Series, 2019, , 1579-1586.	0.4	3
15	Cellular Automation Finite Element Modeling of the Evolution of the As-Cast Microstructure of an Ultrasonically Treated Al-2Cu Alloy. Minerals, Metals and Materials Series, 2019, , 1617-1622.	0.4	0
16	Effect of ultrasonic treatment on the alloying and grain refinement efficiency of a Mg – Zr master alloy added to magnesium at hypo- and hyper-peritectic compositions. Journal of Crystal Growth, 2019, 512, 20-32.	1.5	37
17	The Poisoning Effect of Al and Be on Mg—1 wt.% Zr Alloy and the Role of Ultrasonic Treatment on Grain Refinement. Frontiers in Materials, 2019, 6, .	2.4	7
18	Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys. Bioactive Materials, 2019, 4, 8-16.	15.6	70

#	Article	IF	CITATIONS
19	Precipitation of string-shaped morphologies consisting of aligned α phase in a metastable β titanium alloy. Scientific Reports, 2018, 8, 2038.	3.3	3
20	Fine equiaxed dendritic structure of a medium carbon steel cast using pulsed magneto-oscillation melt treatment. Advances in Manufacturing, 2018, 6, 189-194.	6.1	7
21	The corrosion behaviours of plasma-sprayed Fe-based amorphous coatings. Surface Engineering, 2018, 34, 634-639.	2.2	21
22	Ultrasonic Processing of Aluminum–Magnesium Alloys. Materials, 2018, 11, 1994.	2.9	9
23	The effect of ultrasonic treatment on the mechanisms of grain formation in as-cast high purity zinc. Journal of Crystal Growth, 2018, 495, 20-28.	1.5	24
24	Evolution of the As ast Grain Microstructure of an Ultrasonically Treated Al–2Cu Alloy. Advanced Engineering Materials, 2018, 20, 1800521.	3.5	7
25	Treatment by External Fields. , 2018, , 279-332.		4
26	Simulation of convective flow and thermal conditions during ultrasonic treatment of an Al-2Cu alloy. Computational Materials Science, 2017, 134, 116-125.	3.0	49
27	Development in plasma surface diffusion techniques of Ti-6Al-4V alloy: a review. International Journal of Advanced Manufacturing Technology, 2017, 92, 1901-1912.	3.0	11
28	Improvements in Microstructure and Wear Resistance of Plasma-Sprayed Fe-Based Amorphous Coating by Laser-Remelting. Journal of Thermal Spray Technology, 2017, 26, 778-786.	3.1	12
29	The Effect of Ultrasonic Melt Treatment on Macro-Segregation and Peritectic Transformation in an Al-19Si-4Fe Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5579-5590.	2.2	31
30	Role of ultrasonic treatment, inoculation and solute in the grain refinement of commercial purity aluminium. Scientific Reports, 2017, 7, 9729.	3.3	46
31	Manufacturing of graded titanium scaffolds using a novel space holder technique. Bioactive Materials, 2017, 2, 248-252.	15.6	21
32	Identifying the Stages during Ultrasonic Processing that Reduce the Grain Size of Aluminum with Added Al3Ti1B Master Alloy. Advanced Engineering Materials, 2017, 19, 1700264.	3.5	24
33	The dynamic response of a metastable β Ti–Nb alloy to high strain rates at room and elevated temperatures. Acta Materialia, 2016, 105, 104-113.	7.9	71
34	Grain Refinement of Al-Si Hypoeutectic Alloys by Al3Ti1B Master Alloy and Ultrasonic Treatment. , 2016, , 143-150.		2
35	An investigation of the mechanical behaviour of fine tubes fabricated from a Ti–25Nb–3Mo–3Zr–2Sn alloy. Materials and Design, 2015, 85, 256-265.	7.0	22
36	Enhanced Heterogeneous Nucleation by Pulsed Magnetoâ€Oscillation Treatment of Liquid Aluminum Containing Al3Ti1B Additions. Advanced Engineering Materials, 2015, 17, 1465-1469.	3.5	13

#	Article	IF	CITATIONS
37	On the deformation mechanisms and strain rate sensitivity of a metastable β Ti–Nb alloy. Scripta Materialia, 2015, 107, 34-37.	5.2	52
38	Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 45, 132-141.	3.1	22
39	Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures. Materials Characterization, 2015, 102, 103-113.	4.4	38
40	Cutting force, chip formation, and tool wear during the laser-assisted machining a near-alpha titanium alloy BTi-6431S. International Journal of Advanced Manufacturing Technology, 2015, 79, 1949-1960.	3.0	25
41	Evolution of the microstructure and mechanical properties during fabrication of mini-tubes from a biomedical β-titanium alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42, 207-218.	3.1	16
42	SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. Computational Materials Science, 2014, 84, 188-197.	3.0	58
43	The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al–2Cu alloy. Journal of Crystal Growth, 2014, 408, 119-124.	1.5	108
44	Numerical modeling of laser assisted machining of a beta titanium alloy. Computational Materials Science, 2014, 92, 149-156.	3.0	30
45	The cold-rolling behaviour of AZ31 tubes for fabrication of biodegradable stents. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 292-303.	3.1	18
46	The dynamic response of a β titanium alloy to high strain rates and elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 417-426.	5.6	86
47	Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson–Cook and modified Zerilli–Armstrong models. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 612, 71-79.	5.6	62
48	Nucleation and grain formation of pure Al under Pulsed Magneto-Oscillation treatment. Materials Letters, 2014, 130, 48-50.	2.6	53
49	Experimental investigation of laser assisted machining of AZ91 magnesium alloy. International Journal of Precision Engineering and Manufacturing, 2013, 14, 1263-1265.	2.2	22
50	Effects of phase stability and processing on the mechanical properties of Ti–Nb based β Ti alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 15-25.	3.1	53
51	Finite Element Modeling of Cutting Force and Chip Formation During Thermally Assisted Machining of Ti6Al4V Alloy. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135, .	2.2	41
52	Modelling, simulation and experimental investigation of cutting forces during helical milling operations. International Journal of Advanced Manufacturing Technology, 2012, 63, 839-850.	3.0	45
53	Thermal analysis of precipitation reactions in a Ti–25Nb–3Mo–3Zr–2Sn alloy. Applied Physics A: Materials Science and Processing, 2012, 107, 835-841.	2.3	17
54	Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 405-416.	3.1	56

#	Article	IF	CITATIONS
55	Strengthening of cast Ti–25Nb–3Mo–3Zr–2Sn alloy through precipitation of α in two discrete crystallographic orientations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6601-6606.	5.6	29
56	The Effect of Temperature on the Microstructure of a Metastable Î ² Ti Alloy. Materials Science Forum, 2010, 654-656, 847-850.	0.3	9
57	Interfacial Heat Transfer during Die Casting of an Al-Si-Cu Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 3056-3058.	2.2	14
58	Elevated temperature mechanical properties and microstructures of high pressure die cast magnesium AZ91 alloy cast with different section thicknesses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 282-288.	5.6	29
59	The Aging Response of a Metastable \hat{l}^2 Ti Alloy, BTi-6554. Materials Science Forum, 0, 690, 29-32.	0.3	4