Mei Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584076/publications.pdf Version: 2024-02-01

MEL GAO

#	Article	IF	CITATIONS
1	One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018, 46, 185-192.	16.0	271
2	Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects. Advanced Functional Materials, 2017, 27, 1703704.	14.9	149
3	Selfâ€Assembled 2D Perovskite Layers for Efficient Printable Solar Cells. Advanced Energy Materials, 2019, 9, 1803258.	19.5	149
4	Humidityâ€Tolerant Rollâ€ŧoâ€Roll Fabrication of Perovskite Solar Cells via Polymerâ€Additiveâ€Assisted Hot Slot Die Deposition. Advanced Functional Materials, 2019, 29, 1809194.	14.9	93
5	Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells. Nano Energy, 2017, 41, 443-451.	16.0	91
6	ITO-Free Flexible Perovskite Solar Cells Based on Roll-to-Roll, Slot-Die Coated Silver Nanowire Electrodes. Solar Rrl, 2017, 1, 1700059.	5.8	78
7	Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Communications Materials, 2020, 1, .	6.9	66
8	Revealing the Role of Methylammonium Chloride for Improving the Performance of 2D Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 25980-25990.	8.0	47
9	A Lab-to-Fab Study toward Roll-to-Roll Fabrication of Reproducible Perovskite Solar Cells under Ambient Room Conditions. Cell Reports Physical Science, 2021, 2, 100293.	5.6	39
10	Recent progress towards roll-to-roll manufacturing of perovskite solar cells using slot-die processing. Flexible and Printed Electronics, 2020, 5, 014006.	2.7	37
11	Millimeterâ€Sized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Rollâ€ŧoâ€Roll Fabricated Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	36
12	Controlling Homogenous Spherulitic Crystallization for Highâ€Efficiency Planar Perovskite Solar Cells Fabricated under Ambient Highâ€Humidity Conditions. Small, 2019, 15, e1904422.	10.0	30
13	Beyond Fullerenes: Indacenodithiophene-Based Organic Charge-Transport Layer toward Upscaling of Low-Cost Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 22143-22155.	8.0	27
14	Rollâ€ŧoâ€Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar Rrl, 2021, 5, 2100341.	5.8	22
15	Fully Roll-to-Roll Processed Efficient Perovskite Solar Cells via Precise Control on the Morphology of PbI2:CsI Layer. Nano-Micro Letters, 2022, 14, 79.	27.0	21
16	Drop-Casting Method to Screen Ruddlesden–Popper Perovskite Formulations for Use in Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 56217-56225.	8.0	17
17	A sandwich-like structural model revealed for quasi-2D perovskite films. Journal of Materials Chemistry C, 2021, 9, 5362-5372.	5.5	14
18	Brownian Treeâ€6haped Dendrites in Quasiâ€2D Perovskite Films and Their Impact on Photovoltaic Performance. Advanced Materials Interfaces, 0, , 2102231.	3.7	4