
Kazuhiro Shiozaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584000/publications.pdf Version: 2024-02-01

KAZUHIRO SHIOZAKI

#	Article	IF	CITATIONS
1	Conserved and Divergent Mechanisms That Control TORC1 in Yeasts and Mammals. Genes, 2021, 12, 88.	2.4	30
2	Tripartite suppression of fission yeast TORC1 signaling by the GATOR1-Sea3 complex, the TSC complex, and Gcn2 kinase. ELife, 2021, 10, .	6.0	22
3	Multiplexed suppression of TOR complex 1 induces autophagy during starvation. Autophagy, 2021, 17, 1794-1795.	9.1	4
4	Fission yeast TOR complex 1 phosphorylates Psk1 through an evolutionarily conserved interaction mediated by the TOS motif. Journal of Cell Science, 2021, 134, .	2.0	3
5	Maf1â€dependent transcriptional regulation of tRNAs prevents genomic instability and is associated with extended lifespan. Aging Cell, 2020, 19, e13068.	6.7	24
6	Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. Nature Communications, 2020, 11, 370.	12.8	24
7	Modulation of TOR complex 2 signaling by the stress-activated MAPK pathway in fission yeast. Journal of Cell Science, 2019, 132, .	2.0	11
8	Reciprocal regulation of TORC signaling and tRNA modifications by Elongator enforces nutrient-dependent cell fate. Science Advances, 2019, 5, eaav0184.	10.3	27
9	Nutrient Signaling via the TORC1-Greatwall-PP2A ^{B55δ} Pathway Is Responsible for the High Initial Rates of Alcoholic Fermentation in Sake Yeast Strains of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2019, 85, .	3.1	16
10	The Rag GTPase-Ragulator complex attenuates TOR complex 1 signaling in fission yeast. Autophagy, 2018, 14, 1-2.	9.1	11
11	Evolutionary Conservation of the Components in the TOR Signaling Pathways. Biomolecules, 2017, 7, 77.	4.0	93
12	Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit. ELife, 2017, 6, .	6.0	51
13	Ragulator and GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag GTPases. ELife, 2017, 6, .	6.0	31
14	Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose. Cell Cycle, 2015, 14, 848-856.	2.6	41
15	Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. Journal of Biomolecular NMR, 2015, 61, 55-64.	2.8	16
16	1H, 15N and 13C resonance assignments of the conserved region in the middle domain of S. pombe Sin1 protein. Biomolecular NMR Assignments, 2015, 9, 89-92.	0.8	6
17	A photo-triggerable drug carrier based on cleavage of PEG lipids by photosensitiser-generated reactive singlet oxygen. Organic and Biomolecular Chemistry, 2013, 11, 2567.	2.8	14
18	Response regulator–mediated MAPKKK heteromer promotes stress signaling to the Spc1 MAPK in fission yeast. Molecular Biology of the Cell, 2013, 24, 1083-1092.	2.1	8

KAZUHIRO SHIOZAKI

#	Article	IF	CITATIONS
19	Phosphorelay-dependent and -independent regulation of MAPKKK by the Mcs4 response regulator in fission yeast. Communicative and Integrative Biology, 2013, 6, e25020.	1.4	9
20	Rab-Family GTPase Regulates TOR Complex 2 Signaling in Fission Yeast. Current Biology, 2010, 20, 1975-1982.	3.9	59
21	Two-Component Signaling to the Stress MAP Kinase Cascade in Fission Yeast. Methods in Enzymology, 2010, 471, 279-289.	1.0	6
22	Rab small GTPase emerges as a regulator of TOR complex 2. Small GTPases, 2010, 1, 180-182.	1.6	12
23	Protein Serine/Threonine-Phosphatase 2C (PP2C). , 2010, , 711-716.		1
24	Nutrition-Minded Cell Cycle. Science Signaling, 2009, 2, pe74.	3.6	15
25	Pom1 DYRK Regulates Localization of the Rga4 GAP to Ensure Bipolar Activation of Cdc42 in Fission Yeast. Current Biology, 2008, 18, 322-330.	3.9	160
26	Glycolytic Enzyme GAPDH Promotes Peroxide Stress Signaling through Multistep Phosphorelay to a MAPK Cascade. Molecular Cell, 2008, 30, 108-113.	9.7	72
27	Fission yeast TOR complex 2 activates the AGC-family Gad8 kinase essential for stress resistance and cell cycle control. Cell Cycle, 2008, 7, 358-364.	2.6	75
28	The fission yeast stress MAPK cascade regulates thepmp3+gene that encodes a highly conserved plasma membrane protein. FEBS Letters, 2006, 580, 2409-2413.	2.8	14
29	Wsh3/Tea4 Is a Novel Cell-End Factor Essential for Bipolar Distribution of Tea1 and Protects Cell Polarity under Environmental Stress in S. pombe. Current Biology, 2005, 15, 1006-1015.	3.9	103
30	Yeast signaling pathways in the oxidative stress response. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 569, 13-27.	1.0	201
31	Response of Fission Yeast to Toxic Cations Involves Cooperative Action of the Stress-Activated Protein Kinase Spc1/Sty1 and the Hal4 Protein Kinase. Molecular and Cellular Biology, 2005, 25, 3945-3955.	2.3	19
32	Phosphorelay Signaling in Yeast in Response to Changes in Osmolarity. Science Signaling, 2004, 2004, tr12-tr12.	3.6	3
33	Identification of Cdc37 as a Novel Regulator of the Stress-Responsive Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 2003, 23, 5132-5142.	2.3	50
34	Protein Serine/Threonine-Phosphatase 2C (PP2C). , 2003, , 637-640.		1
35	Cytoplasmic Localization of Wis1 MAPKK by Nuclear Export Signal Is Important for Nuclear Targeting of Spc1/Sty1 MAPK in Fission Yeast. Molecular Biology of the Cell, 2002, 13, 2651-2663.	2.1	38
36	MAPping Stress Survival in Yeasts: From the Cell Surface to the Nucleus. Cell and Molecular Response To Stress, 2002, , 75-90.	0.4	7

KAZUHIRO SHIOZAKI

#	Article	IF	CITATIONS
37	SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Molecular Microbiology, 2002, 45, 1153-1163.	2.5	218
38	Multistep Phosphorelay Proteins Transmit Oxidative Stress Signals to the Fission Yeast Stress-activated Protein Kinase. Molecular Biology of the Cell, 2000, 11, 1169-1181.	2.1	147
39	Heat shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes and Development, 1999, 13, 1653-1663.	5.9	116
40	Heat Stress Activates Fission Yeast Spc1/Styl MAPK by a MEKK-Independent Mechanism. Molecular Biology of the Cell, 1998, 9, 1339-1349.	2.1	107
41	Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. Genes and Development, 1998, 12, 1464-1473.	5.9	145
42	Protein Phosphatase 2C Acts Independently of Stress-activated Kinase Cascade to Regulate the Stress Response in Fission Yeast. Journal of Biological Chemistry, 1997, 272, 17873-17879.	3.4	69
43	Stress-activated protein kinase pathway in cell cycle control of fission yeast. Methods in Enzymology, 1997, 283, 506-520.	1.0	62
44	Expression, Purification and Analyses of Cell-Cycle Regulatory Proteins in S. pombe. , 1997, , 133-148.		3
45	Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast Genes and Development, 1996, 10, 2276-2288.	5.9	397
46	Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature, 1995, 378, 739-743.	27.8	463
47	Functional dissection of the phosphorylated termini of fission yeast DNA topoisomerase II Journal of Cell Biology, 1992, 119, 1023-1036.	5.2	95
48	Cloning and sequencing ofSchizosaccharomyces pombeDNA topoisomerase I gene, and effect of gene disruption. Nucleic Acids Research, 1987, 15, 9727-9739.	14.5	91
49	DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell, 1987, 50, 917-925.	28.9	693