Miroslaw L Wyszynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2583524/publications.pdf

Version: 2024-02-01

201674 189892 2,780 60 27 50 citations h-index g-index papers 61 61 61 2230 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation). Energy, 2007, 32, 2072-2080.	8.8	296
2	Combustion and Emissions of 2,5-Dimethylfuran in a Direct-Injection Spark-Ignition Engine. Energy & En	5.1	242
3	On-board generation of hydrogen-rich gaseous fuelsâ€"a review. International Journal of Hydrogen Energy, 1994, 19, 557-572.	7.1	193
4	Effect of spark timing and load on a DISI engine fuelled with 2,5-dimethylfuran. Fuel, 2011, 90, 449-458.	6.4	158
5	Biogas upgrade to syn-gas (H2–CO) via dry and oxidative reforming. International Journal of Hydrogen Energy, 2011, 36, 397-404.	7.1	143
6	Application of Exhaust Gas Fuel Reforming in Compression Ignition Engines Fueled by Diesel and Biodiesel Fuel Mixtures. Energy & Samp; Fuels, 2003, 17, 1464-1473.	5.1	96
7	Natural gas HCCI engine operation with exhaust gas fuel reforming. International Journal of Hydrogen Energy, 2006, 31, 587-595.	7.1	93
8	Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine. Applied Energy, 2016, 161, 256-267.	10.1	92
9	Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study. Energy & Study. 2006, 20, 2377-2384.	5.1	88
10	Low temperature exhaust gas fuel reforming of diesel fuel. Fuel, 2004, 83, 1837-1845.	6.4	70
11	Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels. Energy, 2012, 47, 620-629.	8.8	66
12	A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine. Energy Conversion and Management, 2009, 50, 393-398.	9.2	65
13	Exhaust gas reforming of gasoline at moderate temperatures. International Journal of Hydrogen Energy, 1996, 21, 507-519.	7.1	59
14	Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping. Energy, 2007, 32, 2396-2400.	8.8	59
15	Experimental study on diesel fuel injection characteristics under cold start conditions with single and split injection strategies. Fuel Processing Technology, 2015, 131, 213-222.	7.2	59
16	Experimental study on microscopic and macroscopic characteristics of diesel spray with split injection. Fuel, 2016, 174, 140-152.	6.4	59
17	Speciation of Hydrocarbon and Carbonyl Emissions of 2,5-Dimethylfuran Combustion in a DISI Engine. Energy & Samp; Fuels, 2012, 26, 6661-6668.	5.1	55
18	An investigation into propane homogeneous charge compression ignition (HCCI) engine operation with residual gas trapping. Fuel, 2005, 84, 2372-2379.	6.4	51

#	Article	lF	CITATIONS
19	Use of catalytic reforming to aid natural gas HCCI combustion in engines: experimental and modelling results of open-loop fuel reforming. International Journal of Hydrogen Energy, 2005, 30, 1583-1594.	7.1	51
20	Particulate Matter size distribution in the exhaust gas of a modern diesel Engine fuelled with a biodiesel blend. Biomass and Bioenergy, 2011, 35, 4280-4289.	5.7	50
21	Corrosion effects of RME in blends with ULSD on aluminium and copper. Fuel Processing Technology, 2012, 104, 204-210.	7.2	44
22	A comprehensive study of kinetics mechanism of Fischer-Tropsch synthesis over cobalt-based catalyst. Chemical Engineering Science, 2017, 171, 32-60.	3.8	42
23	Modelling of a fixed bed reactor for Fischer–Tropsch synthesis of simulated N 2 -rich syngas over Co/SiO 2 : Hydrocarbon production. Fuel, 2015, 154, 140-151.	6.4	41
24	Ultra-high speed imaging study of the diesel spray close to the injector tip at the initial opening stage with single injection. Applied Energy, 2016, 165, 335-344.	10.1	38
25	Experimental study on primary breakup of diesel spray under cold start conditions. Fuel, 2016, 183, 617-626.	6.4	32
26	An Investigation into Bioethanol Homogeneous Charge Compression Ignition (HCCI) Engine Operation with Residual Gas Trapping. Energy & Energy & 18, 1315-1323.	5.1	30
27	Fuel injection and combustion study by the combination of mass flow rate and heat release rate with single and multiple injection strategies. Fuel Processing Technology, 2015, 132, 118-132.	7.2	30
28	Macroscopic and microscopic characterization of diesel spray under room temperature and low temperature with split injection. Fuel Processing Technology, 2016, 142, 71-85.	7.2	30
29	Vapour-phase and particulate-bound PAHs profile generated by a (SI/HCCI) engine from a winter grade commercial gasoline fuel. Fuel, 2010, 89, 2019-2025.	6.4	28
30	Biogas upgrade to syngas through thermochemical recovery using exhaust gas reforming. Biomass and Bioenergy, 2012, 40, 86-95.	5.7	28
31	Ultra-high speed imaging study of the diesel spray close to the injector tip at the initial opening stage with split injection. Applied Energy, 2016, 163, 105-117.	10.1	28
32	An Experimental Study of Dieseline Combustion in a Direct Injection Engine. , 0, , .		27
33	Particulate Emissions from a Gasoline Homogeneous Charge Compression Ignition Engine. , 2007, , .		26
34	Effect of inlet valve timing and water blending on bioethanol HCCI combustion using forced induction and residual gas trapping. Fuel, 2008, 87, 732-739.	6.4	24
35	Catalytic performance of cobalt–silica catalyst for Fischer–Tropsch synthesis: Effects of reaction rates on efficiency of liquid synthesis. Chemical Engineering Science, 2015, 134, 374-384.	3.8	24
36	Effect of composite aftertreatment catalyst on alkane, alkene and monocyclic aromatic emissions from an HCCI/SI gasoline engine. Fuel, 2011, 90, 1457-1464.	6.4	23

#	Article	IF	Citations
37	Influence of the addition of LPG-reformate and H2 on an engine dually fuelled with LPG–diesel, –RME and –GTL Fuels. Fuel, 2014, 118, 73-82.	6.4	22
38	HCCI Engine Modeling for Real-Time Implementation and Control Development. IEEE/ASME Transactions on Mechatronics, 2007, 12, 581-589.	5.8	19
39	Research on expansion of operating windows of controlled homogeneous auto-ignition engines. International Journal of Engine Research, 2007, 8, 29-40.	2.3	18
40	On-board thermochemical energy recovery technology for low carbon clean gasoline direct injection engine powered vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232, 1079-1091.	1.9	17
41	A study of an up―and a downâ€pumping wideâ€blade hydrofoil impeller: Part II. CFD analysis. Canadian Journal of Chemical Engineering, 1998, 76, 866-876.	1.7	15
42	Mathematical Modeling and Performance Study of Fischer-tropsch Synthesis of Liquid Fuel over Cobalt-silica. Energy Procedia, 2015, 75, 62-71.	1.8	15
43	Effect of injection timing on gasoline homogeneous charge compression ignition particulate emissions. International Journal of Engine Research, 2009, 10, 419-430.	2.3	13
44	AN EXPERIMENTAL STUDY OF BIOETHANOL HCCI. Combustion Science and Technology, 2005, 177, 2039-2068.	2.3	12
45	Influence of Inlet Air Temperature on Gasoline HCCI Particulate Emissions. Combustion Science and Technology, 2009, 181, 695-709.	2.3	12
46	Modeling of catalytic monolith reactor for reforming of hexadecane with exhaust gas. International Journal of Hydrogen Energy, 2013, 38, 11826-11839.	7.1	12
47	Modelling and Experimental Investigations of Supercharged HCCI Engines. , 2006, , .		11
48	Near-nozzle microscopic characterization of diesel spray under cold start conditions with split injection strategy. Fuel, 2016, 181, 366-375.	6.4	11
49	Influence of Fuel Properties, Hydrogen, and Reformate Additions on Diesel-Biogas Dual-Fueled Engine. Journal of Energy Engineering - ASCE, 2014, 140, .	1.9	10
50	The effect of solid lubricants on powder attrition and breakage. Tribology International, 1993, 26, 311-317.	5.9	9
51	Cylinder-to-Cylinder Variations in a V6 Gasoline Direct Injection HCCI Engine. Journal of Engineering for Gas Turbines and Power, 2009, 131, .	1.1	9
52	GC-MS determination of low hydrocarbon species (C1–C6) from a diesel partial oxidation reformer. International Journal of Hydrogen Energy, 2008, 33, 7074-7083.	7.1	8
53	Investigation on the effects of temperature, dissolved oxygen and water on corrosion behaviour of aluminium and copper exposed to diesel-type liquid fuels. Fuel Processing Technology, 2014, 128, 220-231.	7.2	8
54	The Effect of Exhaust Throttling on HCCI - Alternative Way to Control EGR and In-Cylinder Flow. SAE International Journal of Fuels and Lubricants, 0, 1, 1277-1289.	0.2	7

#	Article	IF	CITATIONS
55	Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap. Journal of Physics: Conference Series, 2006, 45, 94-103.	0.4	3
56	Effects of pilot injection timing and EGR on a modern V6 common rail direct injection diesel engine. IOP Conference Series: Materials Science and Engineering, 2013, 50, 012008.	0.6	3
57	Using Catalytic Heat Recovery to Improve Efficiency of Gasoline Spark Ignition Engines. Johnson Matthey Technology Review, 2018, 62, 407-416.	1.0	3
58	6-Stroke Engine: Thermodynamic Modelling and Design for Testing. Journal of KONES, 2019, 26, 93-106.	0.2	2
59	Neat Tallow Combustion in a Large Diesel Engine for Electricity Generation from Waste. Energy & Samp; Fuels, 2012, 26, 7288-7298.	5.1	1
60	Numerical Simulation of Valve Timing and Size on a Compressed Air Engine Performance. Applied Mechanics and Materials, 2011, 130-134, 781-785.	0.2	0