Maria J Ortiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2583462/publications.pdf

Version: 2024-02-01

		236612	161609
85	3,131	25	54
papers	citations	h-index	g-index
114	114	114	3088
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Circularly Polarized Luminescence from Simple Organic Molecules. Chemistry - A European Journal, 2015, 21, 13488-13500.	1.7	773
2	Circularly Polarized Luminescence by Visible-Light Absorption in a Chiral <i>O-</i> BODIPY Dye: Unprecedented Design of CPL Organic Molecules from Achiral Chromophores. Journal of the American Chemical Society, 2014, 136, 3346-3349.	6.6	325
3	Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coordination Chemistry Reviews, 2019, 399, 213024.	9.5	231
4	Synthesis and functionalization of new polyhalogenated BODIPY dyes. Study of their photophysical properties and singlet oxygen generation. Tetrahedron, 2012, 68, 1153-1162.	1.0	117
5	Chlorinated BODIPYs: Surprisingly Efficient and Highly Photostable Laser Dyes. European Journal of Organic Chemistry, 2012, 2012, 6335-6350.	1.2	92
6	Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochemistry and Photobiology, 2020, 96, 458-477.	1.3	92
7	Rational Design of Advanced Photosensitizers Based on Orthogonal BODIPY Dimers to Finely Modulate Singlet Oxygen Generation. Chemistry - A European Journal, 2017, 23, 4837-4848.	1.7	87
8	Red-edge-wavelength finely-tunable laser action from new BODIPY dyes. Physical Chemistry Chemical Physics, 2010, 12, 7804.	1.3	72
9	First Highly Efficient and Photostable <i>E</i> and <i>C</i> â€Derivatives of 4,4â€Difluoroâ€4â€boraâ€3a,4aâ€diazaâ€ <i>s</i> a€indacene (BODIPY) as Dye Lasers in the Liquid Phase, Thin Fi Solidâ€State Rods. Chemistry - A European Journal, 2014, 20, 2646-2653.	ilmı <i>s</i> , and	62
10	Bis (halo BODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence. Chemistry - A European Journal, 2016, 22, 8805-8808.	1.7	58
11	Carboxylates versus Fluorines: Boosting the Emission Properties of Commercial BODIPYs in Liquid and Solid Media. Advanced Functional Materials, 2013, 23, 4195-4205.	7.8	56
12	Coumarin–BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 8239-8247.	1.3	56
13	Unprecedented Jâ€Aggregated Dyes in Pure Organic Solvents. Advanced Functional Materials, 2016, 26, 2756-2769.	7.8	52
14	8-Functionalization of Alkyl-Substituted-3,8-Dimethyl BODIPYs by Knoevenagel Condensation. Organic Letters, 2013, 15, 4454-4457.	2.4	42
15	Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region. Chemical Communications, 2013, 49, 11641.	2.2	42
16	Singlet Fission Mediated Photophysics of BODIPY Dimers. Journal of Physical Chemistry Letters, 2018, 9, 641-646.	2.1	42
17	Controlling Optical Properties and Function of BODIPY by Using Asymmetric Substitution Effects. Chemistry - A European Journal, 2010, 16, 14094-14105.	1.7	38
18	Exploring the Application of the Negishi Reaction of HaloBODIPYs: Generality, Regioselectivity, and Synthetic Utility in the Development of BODIPY Laser Dyes. Journal of Organic Chemistry, 2016, 81, 3700-3710.	1.7	38

#	Article	IF	Citations
19	AcetylacetonateBODIPYâ€Biscyclometalated Iridium(III) Complexes: Effective Strategy towards Smarter Fluorescent Photosensitizer Agents. Chemistry - A European Journal, 2017, 23, 10139-10147.	1.7	38
20	BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis. Chemical Communications, 2020, 56, 940-943.	2.2	38
21	Nitro and amino BODIPYS: crucial substituents to modulate their photonic behavior. RSC Advances, 2013, 3, 1547-1556.	1.7	37
22	Negishi reaction in BODIPY dyes. Unprecedented alkylation by palladium-catalyzed C–C coupling in boron dipyrromethene derivatives. RSC Advances, 2014, 4, 19210-19213.	1.7	32
23	Selective Lateral Lithiation of Methyl BODIPYs: Synthesis, Photophysics, and Electrochemistry of New <i>Meso</i> Derivatives. Organic Letters, 2014, 16, 4364-4367.	2.4	32
24	Towards improved halogenated BODIPY photosensitizers: clues on structural designs and heavy atom substitution patterns. Physical Chemistry Chemical Physics, 2017, 19, 69-72.	1.3	31
25	Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes. Chemical Communications, 2014, 50, 12765-12767.	2.2	30
26	SmI ₂ -Mediated 3- <i>exo-trig</i> Cyclization of \hat{l}^2 , \hat{l}^3 -Unsaturated Carbonyl Compounds: Diastereoselective Synthesis of Cyclopropanols. Organic Letters, 2010, 12, 4082-4085.	2.4	29
27	SYNTHESIS OF DIIMINES FROM 1,2-DICARBONYL COMPOUNDS BY DIRECT CATALYZED CONDENSATION. Organic Preparations and Procedures International, 1987, 19, 181-186.	0.6	24
28	Unexpected Oxadi-ï€-methane Rearrangement of β,γ-Unsaturated Aldehydes. Journal of Organic Chemistry, 1996, 61, 1459-1466.	1.7	23
29	An asymmetric BODIPY triad with panchromatic absorption for high-performance red-edge laser emission. Chemical Communications, 2015, 51, 11382-11385.	2.2	23
30	Push–pull flexibly-bridged bis(haloBODIPYs): solvent and spacer switchable red emission. Dalton Transactions, 2016, 45, 11839-11848.	1.6	23
31	A Study of the Competition between the Dipimethane and the Azadipimethane Processes in 2-Vinylbeta.,.gammaunsaturated Oxime Derivatives. The Novel Azadipimethane Reactivity of .beta.,.gammaUnsaturated Oximes. Journal of Organic Chemistry, 1994, 59, 8115-8124.	1.7	20
32	Manipulating Chargeâ€Transfer States in BODIPYs: A Model Strategy to Rapidly Develop Photodynamic Theragnostic Agents. Chemistry - A European Journal, 2020, 26, 601-605.	1.7	20
33	Using Inclusion Complexes with Cyclodextrins To Explore the Aggregation Behavior of a Ruthenium Metallosurfactant. Langmuir, 2015, 31, 2677-2688.	1.6	19
34	A Novel Photochemical Vinylcyclopropane Rearrangement Yielding 6,7-Dihydro-5H-benzocycloheptene Derivatives. Organic Letters, 2000, 2, 183-186.	2.4	18
35	Novel Photoreactions of 2-Aza-1,4-dienes in the Triplet Excited State and via Radical-Cation Intermediates. 2-Aza-di-Ïe-methane Rearrangements Yielding Cyclopropylimines andN-Vinylaziridines. Journal of Organic Chemistry, 2003, 68, 6661-6671.	1.7	17
36	FormylBODIPYs by PCC-Promoted Selective Oxidation of α-MethylBODIPYs. Synthetic Versatility and Applications. Organic Letters, 2019, 21, 4563-4566.	2.4	17

#	Article	IF	CITATIONS
37	Influence of Electron-Donor Sensitizers on SET-Promoted Photochemical Reactions of \hat{l}^2 , \hat{l}^3 -Unsaturated Aldehydes. Organic Letters, 2004, 6, 2261-2264.	2.4	15
38	Novel Oxa-di- \tilde{l} -methane and Norrish Type I Reactions in the S2(\tilde{l} - \tilde{l} , \tilde{l} - \tilde{l}) Excited State of a Series of \tilde{l} 2, \tilde{l} 3-Unsaturated Ketones. Organic Letters, 2005, 7, 2687-2690.	2.4	15
39	Novel photocyclization of β,γâ€unsaturated oximes. Recueil Des Travaux Chimiques Des Pays-Bas, 1995, 114, 514-516.	0.0	14
40	The oxa-di-ï€-methane rearrangement of β,γ-unsaturated aldehydes. Tetrahedron Letters, 1995, 36, 965-968.	0.7	14
41	The Effects of Triplet Sensitizers' Energies on the Photoreactivity of \hat{i}^2 , \hat{i}^3 -Unsaturated Methyl Ketones. Angewandte Chemie - International Edition, 2005, 44, 7739-7741.	7.2	14
42	Rational molecular design enhancing the photonic performance of red-emitting perylene bisimide dyes. Physical Chemistry Chemical Physics, 2017, 19, 13210-13218.	1.3	14
43	A versatile fluorescent molecular probe endowed with singlet oxygen generation under white-light photosensitization. Dyes and Pigments, 2017, 142, 77-87.	2.0	14
44	A novel photochemical 1,2-acyl migration in an enol ester. The synthesis of 3-oxazoline derivatives Tetrahedron Letters, 1983, 24, 1197-1200.	0.7	13
45	Photochemical Vinylcyclopropane Rearrangements of 1-Substituted-3-(2,2-diphenylvinyl)-2,2-dimethylcyclopropanes to Cyclopentenes and Different Heterocycles. Journal of Organic Chemistry, 1999, 64, 1056-1060.	1.7	13
46	Adapting BODIPYs to singlet oxygen production on silica nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 13746-13755.	1.3	13
47	Aroylation of carbanions derived from N-(diphenylmethyl)arylmethanimines. A synthesis of 4-aroyloxy-2-azabuta-1,3-dienes. Journal of the Chemical Society Perkin Transactions 1, 1986, , 2021.	0.9	12
48	Controlling Vilsmeier-Haack processes in meso-methylBODIPYs: A new way to modulate finely photophysical properties in boron dipyrromethenes. Dyes and Pigments, 2017, 141, 286-298.	2.0	12
49	Novel photochemical behaviour of the oximes and hydrazones of \hat{l}^2 , \hat{l}^3 -unsaturated carbonyl compounds. Journal of the Chemical Society Perkin Transactions 1, 1997, , 1535-1542.	0.9	11
50	Di-Ï€-methane Reactions Promoted by SET from Electron-Donor Sensitizers. Journal of the American Chemical Society, 2001, 123, 9920-9921.	6.6	11
51	Tailoring the Molecular Skeleton of Azaâ€BODIPYs to Design Photostable Redâ€Lightâ€Emitting Laser Dyes. ChemPhotoChem, 2019, 3, 75-85.	1.5	11
52	Development of Geometry-Controlled All-Orthogonal BODIPY Trimers for Photodynamic Therapy and Phototheragnosis. Organic Letters, 2022, 24, 3636-3641.	2.4	11
53	Generation of multiple triplet states in an orthogonal bodipy dimer: a breakthrough spectroscopic and theoretical approach. Physical Chemistry Chemical Physics, 2022, 24, 5929-5938.	1.3	10
54	The aza-di-ï€-methane rearrangement of stable derivatives of 2,2-dimethyl-4,4-diphenylbut-3-enal. Journal of the Chemical Society Perkin Transactions 1, 1990, , 2348-2349.	0.9	9

#	Article	lF	CITATIONS
55	The novel 1-aza-di-Ï€-methane rearrangement of 1-substituted-1-aza-1,4-dienes promoted by DCA-sensitization. Tetrahedron Letters, 1999, 40, 1759-1762.	0.7	9
56	Increased laser action in commercial dyes from fluorination regardless of their skeleton. Laser Physics Letters, 2014, 11, 115818.	0.6	9
57	Preparation of dipyrrins from F-BODIPYs by treatment with methanesulfonic acids. RSC Advances, 2015, 5, 68676-68680.	1.7	9
58	Aroylation of n-alkylmethanimines. A synthesis of novel substituted 2-aza-buta-1,3-dienes Tetrahedron Letters, 1981, 22, 2203-2206.	0.7	8
59	Chemically efficient aza-di- $i\in$ -methane photoreactivity with novel stable derivatives of \hat{l}^2 , \hat{l}^3 -unsaturated carbonyl compounds. Journal of the Chemical Society Perkin Transactions 1, 1992, , 2325-2329.	0.9	8
60	A new photochemical synthesis of dihydropyrazoles. Novel mode of photocyclization of some 1-iuminobut-3-enes derivatives. Journal of the Chemical Society Chemical Communications, 1993, .	2.0	8
61	Photochemical Reactivity of 1-Substituted-1-aza-1,4-dienes Promoted by Electron-Acceptor Sensitizers. Di-Ï€-methane Rearrangements and Alternative Reactions via Radical-Cation Intermediates. Journal of Organic Chemistry, 2002, 67, 9397-9405.	1.7	8
62	Efficient photochemical synthesis of 2-vinylcyclopropanecarbaldehydes, precursors of cyclopropane components present in pyrethroids, by using the oxa-di-Ï€-methane rearrangement. Tetrahedron, 2010, 66, 8690-8697.	1.0	8
63	A new synthesis of 1,1-diphenyl-3-arylisoquinolin-4-ones by the novel cyclization of 2-azabuta-1,3-dienes Tetrahedron Letters, 1985, 26, 5213-5216.	0.7	7
64	Unexpected reactions of 1,4-diaza-1,3-dienes under acylating conditions. A new cyclization to non-acylated imidazole derivatives. Tetrahedron Letters, 1987, 28, 4605-4608.	0.7	7
65	Reaction of anions from monoimines of benzil with alkylating agents. Photochemical reactivity of some 4-alkoxy-2-aza-1,3-dienes. Journal of the Chemical Society Perkin Transactions 1, 1992, , 171.	0.9	7
66	Red/NIR Thermally Activated Delayed Fluorescence from Azaâ€BODIPYs. Chemistry - A European Journal, 2020, 26, 16080-16088.	1.7	7
67	Functionalization of Photosensitized Silica Nanoparticles for Advanced Photodynamic Therapy of Cancer. International Journal of Molecular Sciences, 2021, 22, 6618.	1.8	7
68	EfficientO-Acylation of Anions of Monoimines from 1,2-Dicarbonyl Compounds. Synthesis, 1987, 1987, 657-659.	1.2	6
69	Remarkable Observations on Triplet-Sensitized Reactions. The Di-Ï€-methane Rearrangement of Acyclic 1,4-Dienes in the Triplet Excited State. Organic Letters, 2009, 11, 4148-4151.	2.4	6
70	A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 040-040.	1.9	6
71	Mitochondria selective trackers for long-term imaging based on readily accessible neutral BODIPYs. Chemical Communications, 2021, 57, 5318-5321.	2.2	6
72	Red haloBODIPYs as theragnostic agents: The role of the substitution at meso position. Dyes and Pigments, 2022, 198, 110015.	2.0	5

#	Article	IF	CITATIONS
73	A synthesis of isoquinolinones by the photochemical cyclization of 2-azabuta-1,3-dienes in the presence of acids. Journal of the Chemical Society Perkin Transactions 1, 1989, , 1343.	0.9	4
74	Photochemistry of 4-acyloxy-2-azabuta-1,3-dienes. A novel photochemical 1,2-acyl migration in an enol ester. The synthesis of 2,5-dihydro-oxazole derivatives. Journal of the Chemical Society Perkin Transactions 1, 1986, , 623.	0.9	3
75	Synthesis of 1H-isoindoles by a novel rearrangement of some isoquinolin-4(1H)-ones. Journal of the Chemical Society Perkin Transactions $1,1992,2321.$	0.9	3
76	From photosensitizers to light harvesters adapting the molecular structure in all-BODIPY assemblies. Physical Chemistry Chemical Physics, 2021, 23, 11191-11195.	1.3	3
77	Phosphorogenic dipyrrinato-iridium(III) complexes as photosensitizers for photodynamic therapy. Dyes and Pigments, 2022, 197, 109886.	2.0	3
78	Unexpected photochemical reactivity of 3-(9-fluorenylidene)-2,2-dimethylpropenal oxime acetate. Journal of Molecular Structure, 2003, 648, 19-25.	1.8	2
79	The novel photochemical 1,4-addition of azadienol esters to cyclo-octa-1,3-diene Tetrahedron Letters, 1986, 27, 3293-3296.	0.7	1
80	Stereoselective synthesis of functionalized butenolides by the photochemical rearrangement of [2,1]benzisoxazolequinone derivatives. Tetrahedron, 1997, 53, 3363-3368.	1.0	1
81	A BODIPY-Based Fluorescent Sensor for Amino Acids Bearing Thiol. Proceedings (mdpi), 2019, 41, .	0.2	1
82	First Lanthanide Complex for De Novo Phasing in Native Protein Crystallography at 1 Ã Radiation. ACS Applied Bio Materials, 2021, 4, 4575-4581.	2.3	1
83	Exploring New Mitochondria-Targetable Theragnostic styrylBODIPYs. , 2021, 8, .		1
84	Highly efficient and photostable bulk and thin film dye lasers based on new pyrromethene derivatives. , $2013, , .$		0
85	Influence of At-Bridge Nitro Groups on the Photophysics and Chiroptics of helicoBODIPYs: A Step Forward towards the Development of New Chiroptical Sensors. , 2021, 8, .		O