
Udesh Dhawan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2583233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron–gold alloy nanoparticles serve as a cornerstone in hyperthermia-mediated controlled drug release for cancer therapy. International Journal of Nanomedicine, 2018, Volume 13, 5499-5509.	3.3	28
2	Tin disulfide–graphene oxide-β-cyclodextrin mediated electro-oxidation of melatonin hormone: an efficient platform for electrochemical sensing. Journal of Materials Chemistry B, 2020, 8, 7539-7547.	2.9	22
3	Glioma-sensitive delivery of Angiopep-2 conjugated iron gold alloy nanoparticles ensuring simultaneous tumor imaging and hyperthermia mediated cancer theranostics. Applied Materials Today, 2020, 18, 100510.	2.3	20
4	Nanochip-Induced Epithelial-to-Mesenchymal Transition: Impact of Physical Microenvironment on Cancer Metastasis. ACS Applied Materials & Interfaces, 2018, 10, 11474-11485.	4.0	16
5	Spatial Control of Cell-Nanosurface Interactions by Tantalum Oxide Nanodots for Improved Implant Geometry. PLoS ONE, 2016, 11, e0158425.	1.1	15
6	Theranostic Iron@Gold Core–Shell Nanoparticles for Simultaneous Hyperthermiaâ€Chemotherapy upon Photoâ€Stimulation. Particle and Particle Systems Characterization, 2019, 36, 1800419.	1.2	15
7	Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells. Nanomaterials, 2022, 12, 258.	1.9	14
8	Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness. Scientific Reports, 2016, 6, 31998.	1.6	12
9	The Spatiotemporal Control of Osteoblast Cell Growth, Behavior, and Function Dictated by Nanostructured Stainless Steel Artificial Microenvironments. Nanoscale Research Letters, 2017, 12, 86.	3.1	11
10	Oral Cancer Theranostic Application of FeAu Bimetallic Nanoparticles Conjugated with MMP-1 Antibody. Nanomaterials, 2022, 12, 61.	1.9	8
11	Topological control of nitric oxide secretion by tantalum oxide nanodot arrays. Journal of Nanobiotechnology, 2015, 13, 79.	4.2	7
12	Assessing Suitability of Co@Au Core/Shell Nanoparticle Geometry for Improved Theranostics in Colon Carcinoma. Nanomaterials, 2021, 11, 2048.	1.9	6
13	An ossifying landscape: materials and growth factor strategies for osteogenic signalling and bone regeneration. Current Opinion in Biotechnology, 2022, 73, 355-363.	3.3	6
14	Temporal Control of Osteoblast Cell Growth and Behavior Dictated by Nanotopography and Shear Stress. IEEE Transactions on Nanobioscience, 2016, 15, 704-712.	2.2	5
15	Molecular and nano structures of chiral PEDOT derivatives influence the enantiorecognition of biomolecules. <i>In silico</i> analysis of chiral recognition. Analyst, The, 2021, 146, 7118-7125.	1.7	4
16	Hyperthermia-Induced Controlled Local Anesthesia Administration Using Gelatin-Coated Iron–Gold Alloy Nanoparticles. Pharmaceutics, 2020, 12, 1097.	2.0	3
17	Mechanotactic Activation of TGFâ€Î² by PEDOT Artificial Microenvironments Triggers Epithelial to Mesenchymal Transition. Advanced Biology, 2020, 4, 1900165.	3.0	2
18	Layerâ€byâ€layer assembly and electrically controlled disassembly of waterâ€soluble Poly(3,4â€ethylenedioxythiophene) derivatives for bioelectronic interface. Journal of the Chinese Chemical Society, 2020, 67, 1602-1610.	0.8	1