Kapil Dev Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2583221/publications.pdf

Version: 2024-02-01

			172207	1	82168
	52	2,652	29		51
	papers	citations	h-index		g-index
Ī				Ī	
	54	54	54		3735
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioactive Materials, 2022, 8, 267-295.	8.6	153
2	Recent advances in drug delivery systems for glaucoma treatment. Materials Today Nano, 2022, 18, 100178.	2.3	18
3	Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. Small, 2022, 18, e2104783.	5.2	31
4	Manipulating Nanoparticle Aggregates Regulates Receptor–Ligand Binding in Macrophages. Journal of the American Chemical Society, 2022, 144, 5769-5783.	6.6	28
5	Submolecular Ligand Size and Spacing for Cell Adhesion. Advanced Materials, 2022, 34, e2110340.	11.1	13
6	Tuning the properties of inorganic nanomaterials for theranostic applications in infectious diseases: Carbon nanotubes, quantum dots, graphene, and mesoporous carbon nanoparticles., 2022, , 319-352.		2
7	Comparative study of photoinitiators for the synthesis and 3D printing of a light-curable, degradable polymer for custom-fit hard tissue implants. Biomedical Materials (Bristol), 2021, 16, 015007.	1.7	7
8	Three dimensional porous scaffolds derived from collagen, elastin and fibrin proteins orchestrate adipose tissue regeneration. Journal of Tissue Engineering, 2021, 12, 204173142110192.	2.3	20
9	The Effect of Selenium Nanoparticles on the Osteogenic Differentiation of MC3T3-E1 Cells. Nanomaterials, 2021, 11, 557.	1.9	18
10	Utilization of <scp>GelMA</scp> with phosphate glass fibers for glial cell alignment. Journal of Biomedical Materials Research - Part A, 2021, 109, 2212-2224.	2.1	11
11	The eggshell membrane: A potential biomaterial for corneal wound healing. Journal of Biomaterials Applications, 2021, 36, 912-929.	1.2	19
12	Immunoregulation of Macrophages by Controlling Winding and Unwinding of Nanohelical Ligands. Advanced Functional Materials, 2021, 31, 2103409.	7.8	19
13	Selenium Nanoparticles as Candidates for Antibacterial Substitutes and Supplements against Multidrug-Resistant Bacteria. Biomolecules, 2021, 11, 1028.	1.8	30
14	Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapyâ€"Current Status and Future Perspectives. Vaccines, 2021, 9, 935.	2.1	18
15	Magnetic Control and Realâ€Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly. Small, 2021, 17, e2102892.	5.2	22
16	Basic concepts and fundamental insights into electrospinning. , 2021, , 3-43.		2
17	A Study on Myogenesis by Regulation of Reactive Oxygen Species and Cytotoxic Activity by Selenium Nanoparticles. Antioxidants, 2021, 10, 1727.	2.2	7
18	Biological Effects of Tricalcium Silicate Nanoparticle-Containing Cement on Stem Cells from Human Exfoliated Deciduous Teeth. Nanomaterials, 2020, 10, 1373.	1.9	13

#	Article	IF	Citations
19	Physical Properties and Biofunctionalities of Bioactive Root Canal Sealers In Vitro. Nanomaterials, 2020, 10, 1750.	1.9	26
20	Molecularly Imprinted Polymers and Electrospinning: Manufacturing Convergence for Next‣evel Applications. Advanced Functional Materials, 2020, 30, 2001955.	7.8	47
21	Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Acta Biomaterialia, 2020, 108, 97-110.	4.1	75
22	Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering. Journal of Tissue Engineering, 2020, 11, 204173141990042.	2.3	51
23	Label-Free Fluorescent Mesoporous Bioglass for Drug Delivery, Optical Triple-Mode Imaging, and Photothermal/Photodynamic Synergistic Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 2218-2229.	2.3	33
24	Combined Effects of Nanoroughness and Ions Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration. ACS Applied Bio Materials, 2019, 2, 5190-5203.	2.3	29
25	Carbon nanotube incorporation in PMMA to prevent microbial adhesion. Scientific Reports, 2019, 9, 4921.	1.6	49
26	Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons, 2019, 6, 434-469.	6.4	310
27	Combinatory Cancer Therapeutics with Nanoceria-Capped Mesoporous Silica Nanocarriers through pH-triggered Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity. ACS Applied Materials & Drug Release and Redox Activity.	4.0	52
28	Electrophoretic coatings of hydroxyapatite with various nanocrystal shapes. Materials Letters, 2019, 234, 148-154.	1.3	36
29	Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomaterialia, 2018, 69, 218-233.	4.1	91
30	Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dental Materials, 2018, 34, e63-e72.	1.6	111
31	Progress in Nanotheranostics Based on Mesoporous Silica Nanomaterial Platforms. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10309-10337.	4.0	111
32	Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomaterialia, 2017, 55, 466-480.	4.1	67
33	C-Dot Generated Bioactive Organosilica Nanospheres in Theranostics: Multicolor Luminescent and Photothermal Properties Combined with Drug Delivery Capacity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24433-24444.	4.0	44
34	Delivery of Small Genetic Molecules through Hollow Porous Nanoparticles Silences Target Gene and in Turn Stimulates Osteoblastic Differentiation. Particle and Particle Systems Characterization, 2016, 33, 878-886.	1.2	5
35	Osteopromoting Reservoir of Stem Cells: Bioactive Mesoporous Nanocarrier/Collagen Gel through Slow-Releasing FGF18 and the Activated BMP Signaling. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27573-27584.	4.0	35
36	Nanohybrid Electro-Coatings Toward Therapeutic Implants with Controlled Drug Delivery Potential for Bone Regeneration. Journal of Biomedical Nanotechnology, 2016, 12, 1876-1889.	0.5	10

#	Article	IF	CITATIONS
37	Biocompatible Mesoporous Nanotubular Structured Surface to Control Cell Behaviors and Deliver Bioactive Molecules. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26850-26859.	4.0	19
38	Novel magnetic nanocomposite injectables: calcium phosphate cements impregnated with ultrafine magnetic nanoparticles for bone regeneration. RSC Advances, 2015, 5, 13411-13419.	1.7	55
39	Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale, 2015, 7, 14191-14216.	2.8	153
40	Mesoporous Silica-Layered Biopolymer Hybrid Nanofibrous Scaffold: A Novel Nanobiomatrix Platform for Therapeutics Delivery and Bone Regeneration. ACS Applied Materials & Enterfaces, 2015, 7, 8088-8098.	4.0	87
41	Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics. Langmuir, 2015, 31, 11344-11352.	1.6	24
42	Novel Hybrid Nanorod Carriers of Fluorescent Hydroxyapatite Shelled with Mesoporous Silica Effective for Drug Delivery and Cell Imaging. Journal of the American Ceramic Society, 2014, 97, 3071-3076.	1.9	23
43	Nanostructured Biointerfacing of Metals with Carbon Nanotube/Chitosan Hybrids by Electrodeposition for Cell Stimulation and Therapeutics Delivery. ACS Applied Materials & Delivery. Interfaces, 2014, 6, 20214-20224.	4.0	42
44	Luminescent mesoporous nanoreservoirs for the effective loading and intracellular delivery of therapeutic drugs. Acta Biomaterialia, 2014, 10, 1431-1442.	4.1	35
45	Multifunctional Hybrid Nanocarrier: Magnetic CNTs Ensheathed with Mesoporous Silica for Drug Delivery and Imaging System. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2201-2208.	4.0	101
46	A novel therapeutic design of microporous-structured biopolymer scaffolds for drug loading and delivery. Acta Biomaterialia, 2014, 10, 1238-1250.	4.1	48
47	Development of biocompatible apatite nanorod-based drug-delivery system with in situ fluorescence imaging capacity. Journal of Materials Chemistry B, 2014, 2, 2039.	2.9	45
48	Tailoring solubility and drug release from electrophoretic deposited chitosan–gelatin films on titanium. Surface and Coatings Technology, 2014, 242, 232-236.	2.2	39
49	Potential of Magnetic Nanofiber Scaffolds with Mechanical and Biological Properties Applicable for Bone Regeneration. PLoS ONE, 2014, 9, e91584.	1.1	147
50	Chitosan–nanobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential. Journal of Materials Chemistry, 2012, 22, 24945.	6.7	85
51	Biocompatible magnetite nanoparticles with varying silicaâ€coating layer for use in biomedicine: Physicochemical and magnetic properties, and cellular compatibility. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1734-1742.	2.1	101
52	A novel preparation of magnetic hydroxyapatite nanotubes. Materials Letters, 2012, 75, 130-133.	1.3	33