
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonlinear Optical Materials for the Smart Filtering of Optical Radiation. Chemical Reviews, 2016, 116, 13043-13233.	23.0	472
2	Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry, 2020, 22, 7168-7218.	4.6	272
3	Research Progress on Photosensitizers for DSSC. Frontiers in Chemistry, 2018, 6, 481.	1.8	202
4	Phthalocyanines as Active Materials for Optical Limiting. European Journal of Organic Chemistry, 2001, 2001, 3759-3769.	1.2	156
5	A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion. Physical Chemistry Chemical Physics, 2016, 18, 10727-10738.	1.3	135
6	Probing the Redox States at the Surface of Electroactive Nanoporous NiO Thin Films. ACS Applied Materials & Interfaces, 2014, 6, 143-152.	4.0	131
7	Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chemical Science, 2020, 11, 7746-7759.	3.7	119
8	Hydrogel Electrolytes Based on Xanthan Gum: Green Route towards Stable Dye-Sensitized Solar Cells. Nanomaterials, 2020, 10, 1585.	1.9	103
9	lon Migrationâ€Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000310.	10.2	103
10	Soluble axially substituted phthalocyanines: Synthesis and nonlinear optical response. Journal of Materials Science, 2006, 41, 2169.	1.7	99
11	Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds. Chemical Record, 2002, 2, 129-148.	2.9	96
12	Electrochemiluminescence from Organic Emitters. Chemistry of Materials, 2005, 17, 1933-1945.	3.2	95
13	Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2017, 2017, 1-31.	1.5	93
14	A comparison of the electrochromic properties of WO3 films intercalated with H+, Li+ and Na+. Journal of Applied Electrochemistry, 1996, 26, 647-653.	1.5	91
15	Lignin-Based Polymer Electrolyte Membranes for Sustainable Aqueous Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 8550-8560.	3.2	87
16	The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells. Coordination Chemistry Reviews, 2015, 304-305, 179-201.	9.5	86
17	Porphyrazines with Annulated Diazepine Rings. 2. Alternative Synthetic Route to Tetrakis-2,3-(5,7-diphenyl-1,4-diazepino)porphyrazines:Â New Metal Complexes, General Physicochemical Data, Ultravioletâ Visible Linear and Optical Limiting Behavior, and Electrochemical and Spectroelectrochemical Properties, Journal of the American Chemical Society, 2003, 125, 14190-14204.	6.6	75
18	Tetra-2,3-pyrazinoporphyrazines with Externally Appended Pyridine Rings. 2. Metal Complexes of Tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazine:Â Linear and Nonlinear Optical Properties and Electrochemical Behavior. Inorganic Chemistry, 2004, 43, 8637-8648.	1.9	74

#	Article	IF	CITATIONS
19	Dual effect of humidity on cesium lead bromide: enhancement and degradation of perovskite films. Journal of Materials Chemistry A, 2019, 7, 12292-12302.	5.2	74
20	Toward Sustainable, Colorless, and Transparent Photovoltaics: State of the Art and Perspectives for the Development of Selective Nearâ€Infrared Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2021, 11, 2101598.	10.2	73
21	Phthalocyanines as materials for advanced technologies: some examples. Journal of Porphyrins and Phthalocyanines, 2004, 08, 915-933.	0.4	72
22	Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering. Physical Chemistry Chemical Physics, 2013, 15, 2411.	1.3	71
23	Photoanodes for Aqueous Solar Cells: Exploring Additives and Formulations Starting from a Commercial TiO ₂ Paste. ChemSusChem, 2020, 13, 6562-6573.	3.6	71
24	Recent progress in the development of bimetallic photocatalysts for hydrogen generation. Dalton Transactions, 2013, 42, 16243.	1.6	70
25	Synthesis and Characterization of (Octaaryltetraazaporphyrinato)indium(III) Complexes for Optical Limiting. Inorganic Chemistry, 2003, 42, 2683-2694.	1.9	69
26	Stability and Dark Hysteresis Correlate in NiOâ€Based Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901642.	10.2	69
27	Tuning optical and electronic properties in novel carbazole photosensitizers for p-type dye-sensitized solar cells. Electrochimica Acta, 2018, 292, 805-816.	2.6	67
28	Synthesis and Optical Limiting Properties of Axially Bridged Phthalocyanines: [(tBu4PcGa)2O] and [(tBu4PcIn)2O]. Chemistry - A European Journal, 2002, 8, 4248-4254.	1.7	66
29	Nonlinear Optical Properties of Tetrapyrazinoporphyrazinato Indium Chloride Complexes Due to Excited-State Absorption Processes. Journal of Physical Chemistry B, 2005, 109, 12691-12696.	1.2	65
30	Xanthanâ€Based Hydrogel for Stable and Efficient Quasiâ€ S olid Truly Aqueous Dyeâ€Sensitized Solar Cell with Cobalt Mediator. Solar Rrl, 2021, 5, 2000823.	3.1	65
31	Poly(3,4â€ethylenedioxythiophene) in Dye‣ensitized Solar Cells: Toward Solid‣tate and Platinumâ€Free Photovoltaics. Advanced Sustainable Systems, 2021, 5, 2100025.	2.7	64
32	An Easy Route for the Synthesis of New Axially Substituted Titanium(IV) Phthalocyanines. European Journal of Organic Chemistry, 2002, 2002, 3756-3762.	1.2	58
33	Perfluorinated phthalocyanines for optical limiting: Evidence for the direct correlation between substituent electron withdrawing character and the nonlinear optical effect. Journal of Chemical Physics, 2003, 119, 4857-4864.	1.2	57
34	Deposition and characterization of NiOx coatings by magnetron sputtering for application in dye-sensitized solar cells. Surface and Coatings Technology, 2010, 204, 2729-2736.	2.2	56
35	Fabrication of Efficient NiO Photocathodes Prepared via RDS with Novel Routes of Substrate Processing for <i>p</i> â€Type Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2014, 1, 384-391.	1.7	51
36	Synthesis, characterization and optical limiting properties of a gallium phthalocyanine dimer. Journal of Materials Chemistry, 2005, 15, 683.	6.7	50

#	Article	IF	CITATIONS
37	Synthesis of a Bisphthalocyanine and Its Nonlinear Optical Properties. European Journal of Organic Chemistry, 2005, 2005, 3499-3509.	1.2	49
38	Solid‣tate Post Li Metal Ion Batteries: A Sustainable Forthcoming Reality?. Advanced Energy Materials, 2021, 11, .	10.2	49
39	Phthalocyanines and related compounds as switchable materials upon strong irradiation: the molecular engineering behind the optical limiting effect. Solid State Ionics, 2003, 165, 289-303.	1.3	48
40	Application of a novel microwave plasma treatment for the sintering of nickel oxide coatings for use in dye-sensitized solar cells. Surface and Coatings Technology, 2011, 205, S245-S249.	2.2	48
41	Isoindigo derivatives for application in p-type dye sensitized solar cells. RSC Advances, 2015, 5, 85530-85539.	1.7	48
42	Beneficial Effect of Electron-Withdrawing Groups on the Sensitizing Action of Squaraines for <i>p</i> -Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 16340-16353.	1.5	48
43	Electrochemical and Photoelectrochemical Properties of Nickel Oxide (NiO) With Nanostructured Morphology for Photoconversion Applications. Frontiers in Chemistry, 2018, 6, 601.	1.8	47
44	Self-Healing of Gold Nanoparticles in the Presence of Zinc Phthalocyanines and Their Very Efficient Nonlinear Absorption Performances. Journal of Physical Chemistry C, 2009, 113, 8688-8695.	1.5	46
45	Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes. Energies, 2016, 9, 373.	1.6	46
46	Polymer Films on Electrodes. 28. Scanning Electrochemical Microscopy Study of Electron Transfer at Poly(alkylterthiophene) Films. Chemistry of Materials, 1998, 10, 2120-2126.	3.2	45
47	Synthesis and Nonlinear Optical Properties of Fluorine-Containing Naphthalocyanines. Chemistry - A European Journal, 2003, 9, 2758-2762.	1.7	45
48	Nonlinear optical effects related to saturable and reverse saturable absorption by subphthalocyanines at 532 nm. Chemical Communications, 2005, , 3796.	2.2	45
49	Electrochemical and Photoelectrochemical Properties of Screen-Printed Nickel Oxide Thin Films Obtained from Precursor Pastes with Different Compositions. Journal of the Electrochemical Society, 2017, 164, H137-H147.	1.3	45
50	From Bulk to Surface: Sodium Treatment Reduces Recombination at the Nickel Oxide/Perovskite Interface. Advanced Materials Interfaces, 2019, 6, 1900789.	1.9	45
51	Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs. Materials Research Express, 2014, 1, 015040.	0.8	44
52	Photoelectrochemical characterization of squaraine-sensitized nickel oxide cathodes deposited via screen-printing for p -type dye-sensitized solar cells. Applied Surface Science, 2015, 356, 911-920.	3.1	44
53	Comparison of the photoelectrochemical properties of RDS NiO thin films for p-type DSCs with different organic and organometallic dye-sensitizers and evidence of a direct correlation between cell efficiency and charge recombination. Journal of Solid State Electrochemistry, 2015, 19, 975-986.	1.2	43
54	Nonlinear Transmission of a Tetrabrominated Naphthalocyaninato Indium Chloride. Journal of Physical Chemistry B, 2006, 110, 12230-12239.	1.2	39

#	Article	IF	CITATIONS
55	Orientation of substituted phthalocyanines on polycrystalline gold: distinguishing between the first layers and thin films. Chemical Physics Letters, 2005, 403, 1-6.	1.2	38
56	Spray-deposited NiO x films on ITO substrates as photoactive electrodes for p-type dye-sensitized solar cells. Journal of Applied Electrochemistry, 2013, 43, 191-197.	1.5	38
57	Axial Halogen Ligand Effect on Photophysics and Optical Power Limiting of Some Indium Naphthalocyanines. Journal of Physical Chemistry A, 2007, 111, 3263-3270.	1.1	37
58	Large Two-Photon Absorption Cross Sections of Hemiporphyrazines in the Excited State: The Multiphoton Absorption Process of Hemiporphyrazines with Different Central Metals. Journal of the American Chemical Society, 2008, 130, 12290-12298.	6.6	37
59	Biologically friendly room temperature ionic liquids and nanomaterials for the development of innovative enzymatic biosensors: Part II. Talanta, 2019, 194, 26-31.	2.9	37
60	Indium Phthalocyanines with Different Axial Ligands: A Study of the Influence of the Structure on the Photophysics and Optical Limiting Properties. Journal of Physical Chemistry A, 2008, 112, 8515-8522.	1.1	36
61	Electrochemical impedance spectroscopy of polyalkylterthiophenes. Electrochimica Acta, 1999, 44, 4189-4193.	2.6	35
62	Synthesis of Axially Substituted Tetrapyrazinoporphyrazinato Metal Complexes for Optical Limiting and Study of Their Photophysical Properties. Journal of Physical Chemistry B, 2005, 109, 5425-5432.	1.2	35
63	X-Ray structure and ionic conductivity studies of anhydrous and hydrated choline chloride and oxalic acid deep eutectic solvents. Physical Chemistry Chemical Physics, 2018, 20, 30120-30124.	1.3	35
64	Tetra-2,3-pyrazinoporphyrazines with Externally Appended Pyridine Rings. 6. Chemical and Redox Properties and Highly Effective Photosensitizing Activity for Singlet Oxygen Production of Penta- and Monopalladated Complexes in Dimethylformamide Solution. Inorganic Chemistry, 2008, 47, 8757-8766.	1.9	34
65	Adsorption Behavior of I ₃ [–] and I [–] lons at a Nanoporous NiO/Acetonitrile Interface Studied by X-ray Photoelectron Spectroscopy. Langmuir, 2016, 32, 11540-11550.	1.6	34
66	Photophysics and Nonlinear Optical Properties of Tetra- and Octabrominated Silicon Naphthalocyanines. Journal of Physical Chemistry A, 2008, 112, 472-480.	1.1	33
67	Tetrabrominated Lead Naphthalocyanine for Optical Power Limiting. Chemistry - A European Journal, 2010, 16, 1212-1220.	1.7	33
68	Fluorinated Naphthalocyanines Displaying Simultaneous Reverse Saturable Absorption at 532 and 1064 nm. Advanced Materials, 2005, 17, 875-879.	11.1	32
69	Physical Properties of Phthalocyanine-based Materials. , 2003, , 1-36.		31
70	The electrochromic response of tungsten bronzes MxWO3 with different ions and insertion rates. Solar Energy Materials and Solar Cells, 1995, 39, 301-307.	3.0	30
71	Excited state properties of monomeric and dimeric axially bridged indium phthalocyanines upon UV–Vis laser irradiation. Chemical Communications, 2004, , 340-341.	2.2	30
72	Electrochemical characterization of NiO electrodes deposited via a scalable powder microblasting technique. Journal of Electroanalytical Chemistry, 2013, 689, 185-192.	1.9	30

#	Article	IF	CITATIONS
73	KuQuinones as sensitizers for NiO based p-type dye-sensitized solar cells. New Journal of Chemistry, 2017, 41, 2769-2779.	1.4	30
74	Thermosetting Polyurethane Resins as Low-Cost, Easily Scalable, and Effective Oxygen and Moisture Barriers for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 54862-54875.	4.0	30
75	Tetra-t-butyl magnesium phthalocyanine on gold: Electronic structure and molecular orientation. Journal of Chemical Physics, 2005, 122, 064710.	1.2	29
76	Molecular orientation of substituted phthalocyanines: Influence of the substrate roughness. Surface Science, 2006, 600, 4024-4029.	0.8	29
77	Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 5061-5073.	3.2	29
78	Analysis of the nonlinear transmission properties of some naphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1165-1171.	0.4	28
79	Nonlinear Absorption Properties and Excited State Dynamics of Ferrocene. Journal of Physical Chemistry A, 2009, 113, 9286-9294.	1.1	28
80	Synthesis, DFT calculations, linear and nonlinear optical properties of binuclear phthalocyanine gallium chloride. Journal of Molecular Modeling, 2006, 12, 543-550.	0.8	27
81	Integration of graphene onto silicon through electrochemical reduction of graphene oxide layers in non-aqueous medium. Applied Surface Science, 2018, 445, 404-414.	3.1	27
82	Anodically electrodeposited NiO nanoflakes as hole selective contact in efficient air processed p-i-n perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 205, 110288.	3.0	27
83	The unseen evidence of Reduced Ionicity: The elephant in (the) room temperature ionic liquids. Journal of Molecular Liquids, 2021, 324, 115069.	2.3	27
84	Electrochemical Characterization of Rapid Discharge Sintering (RDS) NiO Cathodes for Dye-Sensitized Solar Cells of <i>p</i> -Type. American Journal of Analytical Chemistry, 2015, 06, 176-187.	0.3	27
85	Demonstration of the optical limiting effect for an hemiporphyrazine. Chemical Communications, 2006, , 2394.	2.2	26
86	Excited State Localization and Internuclear Interactions in Asymmetric Ruthenium(II) and Osmium(II) bpy/tpy Based Dinuclear Compounds. Inorganic Chemistry, 2010, 49, 2799-2807.	1.9	26
87	Wavelength dependent photocatalytic H2 generation using iridium–Pt/Pd complexes. Dalton Transactions, 2012, 41, 12678.	1.6	26
88	Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile. Applied Surface Science, 2017, 403, 441-447.	3.1	26
89	Electrochemically Deposited NiO Films as a Blocking Layer in p-Type Dye-Sensitized Solar Cells with an Impressive 45% Fill Factor. Nanomaterials, 2020, 10, 167.	1.9	26
90	Intriguing transport dynamics of ethylammonium nitrate–acetonitrile binary mixtures arising from nano-inhomogeneity. Physical Chemistry Chemical Physics, 2017, 19, 27212-27220.	1.3	24

#	Article	IF	CITATIONS
91	Polymeric Dopant-Free Hole Transporting Materials for Perovskite Solar Cells: Structures and Concepts towards Better Performances. Polymers, 2021, 13, 1652.	2.0	24
92	In-situ detection of stress in oxide films during Si electrodissolution in acidic fluoride electrolytes. Journal of Electroanalytical Chemistry, 1999, 474, 182-187.	1.9	23
93	Influence of the alkyl-chains length on the electronic structure and interface properties of 1,4-octasubstituted zinc phthalocyanines on gold. Journal of Applied Physics, 2005, 97, 073715.	1.1	23
94	Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes. Advances in Condensed Matter Physics, 2015, 2015, 1-18.	0.4	23
95	Modified P3HT materials as hole transport layers for flexible perovskite solar cells. Journal of Power Sources, 2021, 494, 229735.	4.0	23
96	Cu2â [~] xS films as counter-electrodes for dye solar cells with ferrocene-based liquid electrolytes. Thin Solid Films, 2016, 612, 22-28.	0.8	22
97	NLO Behavior of Polymers Containing Yâ€Shaped Chromophores. Macromolecular Chemistry and Physics, 2007, 208, 1900-1907.	1.1	21
98	Investigating the electrodeposition mechanism of anodically grown NiOOH films on transparent conductive oxides. Electrochimica Acta, 2019, 319, 175-184.	2.6	21
99	Assessing the Structure of Protic Ionic Liquids Based on Triethylammonium and Organic Acid Anions. Journal of Physical Chemistry B, 2021, 125, 2781-2792.	1.2	21
100	Photoelectrochemical properties of mesoporous NiO x deposited on technical FTO via nanopowder sintering in conventional and plasma atmospheres. SpringerPlus, 2015, 4, 564.	1.2	20
101	Synthesis and Functionalization of Corroles. An Insight on Their Nonlinear Optical Absorption Properties. Current Organic Synthesis, 2014, 11, 29-41.	0.7	20
102	Stress in thin films of metal oxide electrodes for intercalation reactions. Electrochimica Acta, 1998, 43, 2919-2923.	2.6	19
103	Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies, 2020, 13, 5602.	1.6	19
104	New pyran-based dyes as efficient sensitizers of p-type dye-sensitized solar cells. Solar Energy, 2018, 169, 237-241.	2.9	18
105	Deep eutectic solvents (DES) as green extraction media for antioxidants electrochemical quantification in extra-virgin olive oils. Talanta, 2020, 215, 120880.	2.9	18
106	Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure–Property Relationships. Energies, 2021, 14, 2279.	1.6	18
107	A comparative study of isomeric polydialkylterthiophenes with regular regiochemistry of substitution. Electrochemical synthesis. Polymer, 2000, 41, 6473-6480.	1.8	17
108	Anodic and Cathodic Electrochemically Generated Chemiluminescence in Conjugated Polymers. Advanced Functional Materials, 2002, 12, 299.	7.8	17

#	Article	IF	CITATIONS
109	Spectroelectrochemical properties of homo- and heteroleptic ruthenium and osmium binuclear complexes: intercomponent communication as a function of energy differences between HOMO levels of bridge and metal centres. Dalton Transactions, 2009, , 4146.	1.6	17
110	Synthesis and high ranked NLT properties of new sulfonamide-substituted indium phthalocyanines. Inorganica Chimica Acta, 2010, 363, 3945-3950.	1.2	17
111	Cobalt Sulfide as Counter Electrode in p-Type Dye-Sensitized Solar Cells. ChemistrySelect, 2016, 1, 2808-2815.	0.7	17
112	Effect of Alkyl Chain Length on the Sensitizing Action of Substituted Nonâ€Symmetric Squaraines for pâ€Type Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2017, 4, 2385-2397.	1.7	17
113	EQCM Characterization of some substituted polyterthiophenes. Electrochimica Acta, 1999, 44, 1911-1917.	2.6	16
114	Pristine and Al-doped hematite printed films as photoanodes of p-type dye-sensitized solar cells. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	16
115	New pyran-based molecules as both n- and p-type sensitizers in semi-transparent Dye Sensitized Solar Cells. Dyes and Pigments, 2020, 175, 108140.	2.0	16
116	Xanthanâ€Based Hydrogel for Stable and Efficient Quasiâ€Solid Truly Aqueous Dyeâ€Sensitized Solar Cell with Cobalt Mediator. Solar Rrl, 2021, 5, 2170074.	3.1	16
117	Optical Limiting of Transition Metal-Phthalocyanine Complexes: A Photochromic Effect involving the Excited State of the Conjugated Molecule. Molecular Crystals and Liquid Crystals, 2005, 431, 559-574.	0.4	15
118	Conjugated macrocyclic materials with photoactivated optical absorption for the control of energy transmission delivered by pulsed radiations. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 56-73.	5.6	15
119	Study of the Influence of the I-Based Electrolyte Composition on the Photoconversion Properties of p-Type Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2018, 165, H889-H896.	1.3	15
120	Novel Thienyl DPP derivatives Functionalized with Terminal Electronâ€Acceptor Groups: Synthesis, Optical Properties and OFET Performance. Chemistry - A European Journal, 2022, 28, .	1.7	15
121	Electrochemical Growth of Polyalkylthiophenes. In Situ Characterization of Deposition Processes. Electrochemical and Solid-State Letters, 1999, 1, 217.	2.2	14
122	Stacked Polymeric Phthalocyanines: Synthesis and Structure-Related Properties. , 2003, , 251-280.		14
123	X-ray photoelectron spectroscopy investigation of nanoporous NiO electrodes sensitized with Erythrosine B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 464-471.	2.3	14
124	A combined electrochemical, infrared and EDXD tool to disclose Deep Eutectic Solvents formation when one precursor is liquid: Glyceline as case study. Journal of Molecular Liquids, 2020, 319, 114292.	2.3	14
125	Emission spectra and transient photovoltage in dye-sensitized solar cells under stress tests. Journal of Applied Electrochemistry, 2013, 43, 209-215.	1.5	13
126	First Examples of Pyran Based Colorants as Sensitizing Agents ofp-Type Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2017, 164, F1412-F1418.	1.3	13

#	Article	IF	CITATIONS
127	Contact Glow Discharge Electrolysis: Effect of Electrolyte Conductivity on Discharge Voltage. Catalysts, 2020, 10, 1104.	1.6	13
128	How do arenediazonium salts behave in deep eutectic solvents? A combined experimental and computational approach. Journal of Molecular Liquids, 2021, 339, 116743.	2.3	13
129	Photoelectrochemical response and photoconductivity of poly(3-methylthiophene). Electrochimica Acta, 1998, 44, 753-761.	2.6	12
130	Probe beam deflection study of p-Si electrodissolution in acidic fluoride medium in the oscillating regimes. Journal of Electroanalytical Chemistry, 1998, 446, 7-11.	1.9	12
131	Anodic Silicon Dissolution in Acidic Fluoride Electrolyte. A Probe Beam Deflection Investigation. Journal of Physical Chemistry B, 1998, 102, 4779-4784.	1.2	12
132	Electrosynthesis and characterization of poly(3-methylthiophene) on different substrates. Journal of Solid State Electrochemistry, 1999, 3, 352-356.	1.2	12
133	Flexible Interfaces between Reduced Graphene Oxide and Indium Tin Oxide/Polyethylene Terephthalate for Advanced Optoelectronic Devices. ACS Applied Nano Materials, 2019, 2, 5963-5972.	2.4	12
134	In-Depth Physico-Chemical and Structural Investigation of a Dicarboxylic Acid/Choline Chloride Natural Deep Eutectic Solvent (NADES): A Spotlight on the Importance of a Rigorous Preparation Procedure. ACS Sustainable Chemistry and Engineering, 2019, , .	3.2	12
135	Stress changes in electrochromic thin film electrodes:. Solar Energy Materials and Solar Cells, 1999, 56, 213-221.	3.0	11
136	Electrochemiluminescence of conjugated polymer. Synthetic Metals, 2001, 121, 1685-1686.	2.1	11
137	The steady-state and time-resolved photophysical properties of a dimeric indium phthalocyanine complex. Materials Chemistry and Physics, 2006, 98, 212-216.	2.0	11
138	Application of Circular Dichroism Spectroscopy in the Study of Mixed-Valence Asymmetric Ruthenium Polypyridyl Complexes. Inorganic Chemistry, 2011, 50, 5861-5863.	1.9	11
139	Photoelectrochemical Response of DSSCs Under Prolonged Reverse Bias and Conduction Band Lowering in Ruâ€Complexâ€5ensitized TiO ₂ . ChemElectroChem, 2014, 1, 1388-1394.	1.7	11
140	Novel DPP derivatives functionalized with auxiliary electron-acceptor groups and characterized by narrow bandgap and ambipolar charge transport properties. Dyes and Pigments, 2021, 186, 109026.	2.0	11
141	Methoxy-substituted copper complexes as possible redox mediators in dye-sensitized solar cells. New Journal of Chemistry, 2021, 45, 15303-15311.	1.4	11
142	Review—Multiscale Characterization of Li-Ion Batteries through the Combined Use of Atomic Force Microscopy and X-ray Microscopy and Considerations for a Correlative Analysis of the Reviewed Data. Journal of the Electrochemical Society, 2021, 168, 126522.	1.3	11
143	Conjugated Molecules for the Smart Filtering of Intense Radiations. International Journal of Molecular Sciences, 2003, 4, 291-300.	1.8	10
144	Effect of Sodium Hydroxide Pretreatment of NiO _x Cathodes on the Performance of Squaraine‣ensitized <i>p</i> â€Type Dye‣ensitized Solar Cells. ChemistrySelect, 2018, 3, 1066-1075.	0.7	10

#	Article	IF	CITATIONS
145	Nanocomposites of Nickel Oxide and Zirconia for the Preparation of Photocathodes with Improved Performance in <i>p</i> -Type Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2019, 166, D290-D300.	1.3	10
146	Comparative Study of Isomeric Polyalkylterthiophenes with Regular Regiochemistry of Substitution:Â Characterization of Electrochemical Doping Process. Chemistry of Materials, 1999, 11, 3484-3489.	3.2	9
147	Oxidative dissolution of NiO in aqueous electrolyte: An impedance study. Journal of Electroanalytical Chemistry, 2018, 816, 205-214.	1.9	9
148	Inverted perovskite solar cells with transparent hole transporting layer based on semiconducting nickel oxide. AIP Conference Proceedings, 2018, , .	0.3	9
149	Copper-Free Halodediazoniation of Arenediazonium Tetrafluoroborates in Deep Eutectic Solvents-like Mixtures. Molecules, 2022, 27, 1909.	1.7	9
150	Alkyl chain effects in thin films of substituted phthalocyanines studied using infrared spectroscopy. Applied Surface Science, 2005, 252, 139-142.	3.1	8
151	Limits on the use of cobalt sulfide as anode of p-type dye-sensitized solar cells. Journal Physics D: Applied Physics, 2017, 50, 215501.	1.3	8
152	First Evidence of Electrode Reconstruction in Mesoporous NiO After Operation as Photocathode of Dyeâ€Sensitized Solar Cells. ChemistrySelect, 2018, 3, 6729-6736.	0.7	8
153	Use of the bending-beam-method for the study of the anodic oxidation of Si in dilute fluoride media. Electrochimica Acta, 2000, 45, 4607-4613.	2.6	7
154	Nucleation of solution convection channels as the first step in electro-hydrodynamic pattern formation. Physical Chemistry Chemical Physics, 2000, 2, 1183-1186.	1.3	7
155	Orientation of Differently Substituted Phthalocyanines: First Layers and Thin Films. Molecular Crystals and Liquid Crystals, 2006, 455, 241-249.	0.4	7
156	Effect of Sensitization on the Electrochemical Properties of Nanostructured NiO. Coatings, 2018, 8, 232.	1.2	7
157	Synthesis of axially substituted gallium, indium and thallium phthalocyanines with nonlinear optical properties. Arkivoc, 2006, 2006, 77-96.	0.3	7
158	Electrodeposition as a Versatile Preparative Tool for Perovskite Photovoltaics: Aspects of Metallization and Selective Contacts/Active Layer Formation. Solar Rrl, 0, , 2100993.	3.1	7
159	Recent Advances in the Synthesis of Inorganic Materials Using Environmentally Friendly Media. Molecules, 2022, 27, 2045.	1.7	7
160	Study of polyalkylterthiophenes deposition. Synthetic Metals, 1999, 101, 22.	2.1	6
161	Influence of the Conditions of Sensitization on the Characteristics ofp-DSCs Sensitized with Asymmetric Squaraines. Journal of the Electrochemical Society, 2017, 164, H1099-H1111.	1.3	6
162	Statistic-Driven Proton Transfer Affecting Nanoscopic Organization in an Ethylammonium Nitrate Ionic Liquid and 1,4-Diaminobutane Binary Mixture: A Steamy Pizza Model. Symmetry, 2019, 11, 1425.	1.1	6

#	Article	IF	CITATIONS
163	A new electrochemical sensor for extra-virgin olive oils classification. Food Control, 2020, 109, 106903.	2.8	6
164	NiO/ZrO ₂ nanocomposites as photocathodes of tandem DSCs with higher photoconversion efficiency with respect to parent single-photoelectrode p-DSCs. Sustainable Energy and Fuels, 2021, 5, 4736-4748.	2.5	6
165	An open-source equipment for thin film fabrication by electrodeposition, dip coating, and SILAR. International Journal of Advanced Manufacturing Technology, 2016, 87, 2901-2909.	1.5	5
166	Sodium Hydroxide Pretreatment as an Effective Approach to Reduce the Dye/Holes Recombination Reaction in P-Type DSCs. Frontiers in Chemistry, 2019, 7, 99.	1.8	5
167	Emerging Photovoltaic Technologies and Eco-Design—Criticisms and Potential Improvements. , 0, , .		5
168	Optical switching of a photochromic bis-phenylazo compound in PMMA films. Journal of Materials Science, 2007, 42, 7866-7871.	1.7	4
169	Adsorption Dynamics of Redox Active Species onto Polarized Surfaces of Sensitized NiO. ACS Omega, 2019, 4, 1690-1699.	1.6	4
170	Towards an ink-based method for the deposition of ZnxCd1-xS buffer layers in CZTS solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 2575-2582.	1.1	4
171	EQCM Analysis of the Process of Electrochemical Insertion in Regioregular Alkyl-Susbtituted Polyterthiophene during n-Doping. Journal of the Electrochemical Society, 2021, 168, 052506.	1.3	4
172	Electrochemical Generation of Light in Conjugated Polymers. ACS Symposium Series, 2002, , 103-112.	0.5	3
173	Simultaneous reverse saturable absorption of fluorinated naphthalocyanines at 532 and 1064 nm. , 2004, , .		2
174	EQCM Analysis of the Insertion Phenomena in a n-Doped Poly-Alkyl-Terthiophene With Regioregular Pattern of Substitution. Frontiers in Chemistry, 2021, 9, 711426.	1.8	2
175	CHAPTER 12. Metallosupramolecular Assemblies for Application as Photocatalysts for the Production of Solar Fuels. RSC Smart Materials, 2015, , 345-396.	0.1	2
176	Evidence of Solid-State Polymerization in Regioregular Poly-3′,4′-Didodecyl-2,2′:5′,2′′-Terthiophe Electrochemical Cycling. Journal of the Electrochemical Society, 2021, 168, 066521.	ene Durin 1.3	g ₁
177	In Situ Measurement of the Conductance of Regioregular Poly-3′,4′-didodecyl-2,2′:5′,2′′-terthio during Potentiodynamic Growth. Journal of the Electrochemical Society, 2021, 168, 082507.	ohene 1.3	1
178	Long-Term Stability of Large Area Perovskite Solar Cell under Thermal Stress. , 0, , .		1
179	<title>Optical and mechanical properties of tungsten bronzes: a comparative study of
M<formula><inf><roman>x</roman></inf></formula>WO<formula><inf><roman>3</roman></inf></formula>
with different ions</title> ., 1997, , .		0
180	Non invasive in-situ techniques for the characterization of processes at thin film electrodes. , 1999, , .		0

#	Article	IF	CITATIONS
181	Physical Properties of Phthalocyanine-Based Materials. ChemInform, 2004, 35, no.	0.1	0
182	Stacked Polymeric Phthalocyanines: Synthesis and Structure-Related Properties. ChemInform, 2004, 35, no.	0.1	0
183	Modified P3HT materials as hole transport layers for flexible perovskite solar cells , 0, , .		0
184	Polyurethanes as low cost and efficient encapsulants for Perovskite Solar Cells. , 0, , .		0
185	Near Infra-Red Dyes in Dye-Sensitized Solar Cells: from Panchromatic Absorption to Completely Transparent DSSCs. , 0, , .		0
186	Effect of the Sintering Procedure on the Photoelectrochemical Performances of Nanostructured Mixed Oxides as Photocathodes of p and Tandem Dye-Sensitized Solar Cells with Superior Conversion Properties. , 0, , .		0
187	Perovskite films and solar cells on PET substrates for space applications: stability study under neutron irradiation. , 0, , .		0
188	Toward non-intrusive BIPV: strategies for NIR-selective DSSCs. , 0, , .		0