
Keith W Jarosinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2582244/publications.pdf Version: 2024-02-01

KEITH W LADOSINSKI

#	Article	IF	CITATIONS
1	The Conserved Herpesviridae Protein Kinase (CHPK) of Gallid alphaherpesvirus 3 (GaHV3) Is Required for Horizontal Spread and Natural Infection in Chickens. Viruses, 2022, 14, 586.	1.5	3
2	Coinfection in the host can result in functional complementation between live vaccines and virulent virus. Virulence, 2022, 13, 980-989.	1.8	3
3	The requirement of glycoprotein C (gC) for interindividual spread is a conserved function of gC for avian herpesviruses. Scientific Reports, 2021, 11, 7753.	1.6	9
4	The Requirement of Glycoprotein C for Interindividual Spread Is Functionally Conserved within the Alphaherpesvirus Genus (Mardivirus), but Not the Host (Gallid). Viruses, 2021, 13, 1419.	1.5	4
5	Exocytosis of Progeny Infectious Varicella-Zoster Virus Particles via a Mannose-6-Phosphate Receptor Pathway without Xenophagy following Secondary Envelopment. Journal of Virology, 2020, 94, .	1.5	17
6	Characterization and Comparison of SLAM/CD150 in Free-Ranging Coyotes, Raccoons, and Skunks in Illinois for Elucidation of Canine Distemper Virus Disease. Pathogens, 2020, 9, 510.	1.2	4
7	Expression of the Conserved Herpesvirus Protein Kinase (CHPK) of Marek's Disease Alphaherpesvirus in the Skin Reveals a Mechanistic Importance for CHPK during Interindividual Spread in Chickens. Journal of Virology, 2020, 94, .	1.5	7
8	Marek's disease alphaherpesvirus (MDV) RLORF4 is not required for expression of glycoprotein C and interindividual spread. Virology, 2019, 534, 108-113.	1.1	9
9	The <i>Herpesviridae</i> Conserved Multifunctional Infected-Cell Protein 27 (ICP27) Is Important but Not Required for Replication and Oncogenicity of Marek's Disease Alphaherpesvirus. Journal of Virology, 2019, 93, .	1.5	18
10	Cellular Stress Response to Varicella-Zoster Virus Infection of Human Skin Includes Highly Elevated Interleukin-6 Expression. Open Forum Infectious Diseases, 2018, 5, ofy118.	0.4	19
11	Interindividual Spread of Herpesviruses. Advances in Anatomy, Embryology and Cell Biology, 2017, 223, 195-224.	1.0	15
12	Exocytosis of Varicella-Zoster Virus Virions Involves a Convergence of Endosomal and Autophagy Pathways. Journal of Virology, 2016, 90, 8673-8685.	1.5	75
13	Expression of fluorescent proteins within the repeat long region of the Marek's disease virus genome allows direct identification of infected cells while retaining full pathogenicity. Virus Research, 2015, 201, 50-60.	1.1	8
14	Differential expression of Marek's disease virus (MDV) late proteins during in vitro and in situ replication: Role for pUL47 in regulation of the MDV UL46–UL49 gene locus. Virology, 2015, 484, 213-226.	1.1	16
15	The ORF012 Gene of Marek's Disease Virus Type 1 Produces a Spliced Transcript and Encodes a Novel Nuclear Phosphoprotein Essential for Virus Growth. Journal of Virology, 2015, 89, 1348-1363.	1.5	12
16	A Deletion in the Glycoprotein L (gL) Gene of U.S. Marek's Disease Virus (MDV) Field Strains Is Insufficient to Confer Increased Pathogenicity to the Bacterial Artificial Chromosome (BAC)–Based Strain, RB-1B. Avian Diseases, 2013, 57, 509-518.	0.4	6
17	Importance of Differential Expression of Marek's Disease Virus Gene pp38 for the Pathogenesis of Marek's Disease. Avian Diseases, 2013, 57, 503-508.	0.4	6
18	Marek's disease virus (MDV) ubiquitin-specific protease (USP) performs critical functions beyond its enzymatic activity during virus replication. Virology, 2013, 437, 110-117.	1,1	9

Keith W Jarosinski

#	Article	IF	CITATIONS
19	Fluorescently Tagged pUL47 of Marek's Disease Virus Reveals Differential Tissue Expression of the Tegument Protein In Vivo. Journal of Virology, 2012, 86, 2428-2436.	1.5	48
20	Marek's Disease Virus Late Protein Expression in Feather Follicle Epithelial Cells as Early as 8ÂDays Postinfection. Avian Diseases, 2012, 56, 725-731.	0.4	18
21	Dual Infection and Superinfection Inhibition of Epithelial Skin Cells by Two Alphaherpesviruses Co-Occur in the Natural Host. PLoS ONE, 2012, 7, e37428.	1.1	25
22	Marek's Disease Virus Expresses Multiple UL44 (gC) Variants through mRNA Splicing That Are All Required for Efficient Horizontal Transmission. Journal of Virology, 2012, 86, 7896-7906.	1.5	25
23	Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. Journal of Experimental Medicine, 2011, 208, 605-615.	4.2	97
24	Herpesvirus Telomerase RNA (vTR) with a Mutated Template Sequence Abrogates Herpesvirus-Induced Lymphomagenesis. PLoS Pathogens, 2011, 7, e1002333.	2.1	37
25	Down-regulation of MHC class I by the Marek's disease virus (MDV) UL49.5 gene product mildly affects virulence in a haplotype-specific fashion. Virology, 2010, 405, 457-463.	1.1	31
26	Further Analysis of Marek's Disease Virus Horizontal Transmission Confirms That U _L 44 (gC) and U _L 13 Protein Kinase Activity Are Essential, while U _S 2 Is Nonessential. Journal of Virology, 2010, 84, 7911-7916.	1.5	36
27	Herpesvirus Telomerase RNA(vTR)-Dependent Lymphoma Formation Does Not Require Interaction of vTR with Telomerase Reverse Transcriptase (TERT). PLoS Pathogens, 2010, 6, e1001073.	2.1	36
28	Viral control of vTR expression is critical for efficient formation and dissemination of lymphoma induced by Marek's disease virus (MDV). Veterinary Research, 2010, 41, 56.	1.1	31
29	Selection for Increased Nitric Oxide Production Does Not Increase Resistance to Marek's Disease in a Primary Broiler Breeder Line. Avian Diseases, 2009, 53, 336-340.	0.4	3
30	Effective Treatment of Respiratory Alphaherpesvirus Infection Using RNA Interference. PLoS ONE, 2009, 4, e4118.	1.1	29
31	Negative modulation of the chicken infectious anemia virus promoter by COUP-TF1 and an E box-like element at the transcription start site binding ÎEF1. Journal of General Virology, 2008, 89, 2998-3003.	1.3	16
32	Alphaherpesviruses and Chemokines: Pas de Deux Not Yet Brought to Perfection. Journal of Virology, 2008, 82, 6090-6097.	1.5	21
33	A herpesvirus ubiquitin-specific protease is critical for efficient T cell lymphoma formation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20025-20030.	3.3	74
34	Horizontal Transmission of Marek's Disease Virus Requires U S 2, the U L 13 Protein Kinase, and gC. Journal of Virology, 2007, 81, 10575-10587.	1.5	105
35	Multiple alternative splicing to exons II and III of viral interleukin-8 (vIL-8) in the Marek's disease virus genome: the importance of vIL-8 exon I. Virus Genes, 2007, 34, 9-22.	0.7	50
36	Expression of Marek's disease virus phosphorylated polypeptide pp38 produces splice variants and enhances metabolic activity. Veterinary Microbiology, 2006, 117, 154-168.	0.8	13

Keith W Jarosinski

#	Article	IF	CITATIONS
37	Isolation and molecular characterization of a new Muscovy duck parvovirus from Muscovy ducks in the USA. Avian Pathology, 2006, 35, 435-441.	0.8	44
38	Marek's disease virus: lytic replication, oncogenesis and control. Expert Review of Vaccines, 2006, 5, 761-772.	2.0	85
39	Positive and Negative Regulation of Chicken Anemia Virus Transcription. Journal of Virology, 2005, 79, 2859-2868.	1.5	31
40	Attenuation of Marek's Disease Virus by Deletion of Open Reading Frame RLORF4 but Not RLORF5a. Journal of Virology, 2005, 79, 11647-11659.	1.5	101
41	Pro-inflammatory Responses in Chicken Spleen and Brain Tissues after Infection with Very Virulent Plus Marek's Disease Virus. Viral Immunology, 2005, 18, 148-161.	0.6	83
42	Association between rate of viral genome replication and virulence of Marek's disease herpesvirus strains. Virology, 2004, 328, 142-150.	1.1	50
43	Impact of deletions within the Bam HI-L fragment of attenuated Marek's disease virus on vIL-8 expression and the newly identified transcript of open reading frame LORF4. Virus Genes, 2003, 26, 255-269.	0.7	31
44	Influence of Genetic Resistance of the Chicken and Virulence of Marek's Disease Virus (MDV) on Nitric Oxide Responses After MDV Infection. Avian Diseases, 2002, 46, 636-649.	0.4	67
45	Interferon regulatory factor-1 is required for interferon-Î ³ -induced MHC class I genes in astrocytes. Journal of Neuroimmunology, 2002, 122, 74-84.	1.1	29
46	Cellular Responses in Chickens Treated with IFN-α Orally or Inoculated with Recombinant Marek's Disease Virus Expressing IFN-α. Journal of Interferon and Cytokine Research, 2001, 21, 287-296.	0.5	41
47	Specific Deficiency in Nuclear Factor-κB Activation in Neurons of the Central Nervous System. Laboratory Investigation, 2001, 81, 1275-1288.	1.7	25
48	Expression and function of the protein tyrosine phosphatase SHP-1 in oligodendrocytes. , 2000, 29, 376-385.		50
49	A mechanism for selective induction of 2′-5′ oligoadenylate synthetase, anti-viral state, but not MHC Class I genes by interferon-beta in neurons. Journal of NeuroVirology, 1999, 5, 161-171.	1.0	18