Nomso C Hintsho-Mbita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2582172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic degradation of dyes and removal of bacteria using biosynthesised flowerlike NiO nanoparticles. International Journal of Environmental Analytical Chemistry, 2023, 103, 1107-1122.	3.3	12
2	Photocatalytic degradation of dyes, pharmaceutical and the removal bacterial pollutants using Rod shaped green derived CuO nanoparticles. International Journal of Environmental Analytical Chemistry, 2023, 103, 8063-8079.	3.3	6
3	Diethylamine functionalised <i>Moringa oleifera</i> leaves for the removal of chromium(VI) and bacteria from wastewater. International Journal of Environmental Analytical Chemistry, 2022, 102, 3002-3022.	3.3	6
4	Green synthesis of ZnO: Effect of plant concentration on the morphology, optical properties and photodegradation of dyes and antibiotics in wastewater. Optik, 2022, 251, 168459.	2.9	18
5	Green synthesis of Zinc sulphide (ZnS) nanostructures using S. frutescences plant extract for photocatalytic degradation of dyes and antibiotics. Materials Research Express, 2022, 9, 015001.	1.6	21
6	Biosynthesized Bimetallic (ZnOSnO2) Nanoparticles for Photocatalytic Degradation of Organic Dyes and Pharmaceutical Pollutants. Catalysts, 2022, 12, 334.	3.5	9
7	Green synthesis of NiFe2O4 nanoparticles for the degradation of Methylene Blue, sulfisoxazole and bacterial strains. Inorganic Chemistry Communication, 2022, 139, 109348.	3.9	13
8	Thin Films (FTO/BaTiO ₃ /AgNPs) for Enhanced Piezo-Photocatalytic Degradation of Methylene Blue and Ciprofloxacin in Wastewater. ACS Omega, 2022, 7, 24329-24343.	3.5	19
9	Green derived metal sulphides as photocatalysts for waste water treatment. A review. Current Research in Green and Sustainable Chemistry, 2021, 4, 100163.	5.6	33
10	Photocatalytic degradation of methylene blue and sulfisoxazole from water using biosynthesized zinc ferrite nanoparticles. Ceramics International, 2021, 47, 22615-22626.	4.8	57
11	Green synthesis of Cadmium Sulphide nanoparticles for the photodegradation of Malachite green dye, Sulfisoxazole and removal of bacteria. Optik, 2021, 247, 167851.	2.9	28
12	Biosynthesis of titanium dioxide nanoparticles for the photodegradation of dyes and removal of bacteria. Optik, 2020, 224, 165728.	2.9	42
13	Biological therapeutics of AgO nanoparticles against pathogenic bacteria and A549 lung cancer cells. Materials Research Express, 2019, 6, 105402.	1.6	16
14	ZnO nanoparticles via <i>Sutherlandia frutescens</i> plant extract: physical and biological properties. Materials Research Express, 2019, 6, 085006.	1.6	18
15	Cytotoxic effect of arsenic trioxide-β-cyclodextrin fly ash-derived carbon nanospheres (As2O3-β-cyclodextrin CNSs). Materials Research Express, 2019, 6, 065403.	1.6	2
16	Synthesis of NiO nanoparticles via a green route using Monsonia burkeana: The physical and biological properties. Journal of Photochemistry and Photobiology B: Biology, 2018, 182, 18-26.	3.8	58
17	Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceramics International, 2018, 44, 16999-17006.	4.8	86
18	Fly Ash Derived <i>β</i> -Cyclodextrin Carbon Nanospheres as Potential Drug Delivery Vehicles. Advanced Science. Engineering and Medicine. 2018. 10. 9-13.	0.3	1