List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2582079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of superconducting features and gap coefficients for electron–phonon couplings properties of MgB2 with multi-walled carbon nanotube addition. Journal of Materials Science: Materials in Electronics, 2022, 33, 3786.	1.1	3
2	Vertically aligned Nd substituted ZnO nanorods: Morphology, optical characteristics and room temperature ferromagnetism. Current Applied Physics, 2022, 35, 45-57.	1.1	1
3	Effect of Ni and Al doping on structural, optical, and <scp>CO₂</scp> gas sensing properties of <scp>1D ZnO</scp> nanorods produced by hydrothermal method. Microscopy Research and Technique, 2022, 85, 1502-1517.	1.2	5
4	Solar light performances of n-ZnO nanorods/p-Si-based photodetectors under high illumination intensity. Journal of Materials Science: Materials in Electronics, 2022, 33, 15222-15231.	1.1	1
5	Influence of Sr/Nd partial replacement on fundamental properties of Bi-2223 superconducting system. Journal of Materials Science: Materials in Electronics, 2021, 32, 7073-7089.	1.1	4
6	Investigation of microhardness properties of the multi-walled carbon nanotube additive MgB2 structure by using the vickers method. Cryogenics, 2021, 116, 103295.	0.9	1
7	Nanostructural characterization and defect-mediated room temperature ferromagnetism of Zn1â''xFexO (xÂ=Â0.00‑'0.07) nanorods prepared via hydrothermal method. Journal of Alloys and Compounds, 2021, 880, 160528.	2.8	3
8	Comparison of the Dopant Effect and Sample Preparation Method on Y-123 Superconductors. Journal of Superconductivity and Novel Magnetism, 2021, 34, 2821-2832.	0.8	1
9	Characterization of the CoFe2O4/Cu displacement effect in the Y123 superconductor matrix on critical properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 20578-20588.	1.1	3
10	Effect of doping on microstructure and optical properties of ternary structure of Zn1â^'xâ^'yBxCyO (B=Cu, C=Co) nano thin films. Journal of Materials Science: Materials in Electronics, 2020, 31, 22351-22364.	1.1	0
11	Roughness and bearing analysis of ZnO nanorods. Ceramics International, 2020, 46, 15183-15196.	2.3	13
12	Effect of Co/Cu partial replacement on fundamental features of Y-123 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 7630-7641.	1.1	4
13	Evaluation of key mechanical design properties and mechanical characteristic features of advanced Bi-2212 ceramic materials with homovalent Bi/Ga partial replacement: Combination of experimental and theoretical approaches. Ceramics International, 2019, 45, 21183-21192.	2.3	6
14	Effect of homovalent Bi/Ga substitution on propagations of flaws, dislocations and crack in Bi-2212 superconducting ceramics: Evaluation of new operable slip systems with substitution. Ceramics International, 2019, 45, 22912-22919.	2.3	5
15	The influence of boron doping on the structural and mechanical characterization of ZnO. Journal of Alloys and Compounds, 2019, 797, 717-726.	2.8	3
16	Comparative investigation on electronic properties of metal-semiconductor structures with variable ZnO thin film thickness for sensor applications. Composites Part B: Engineering, 2019, 174, 106987.	5.9	10
17	The Effect of Zinc on the Structural, Electrical, and Mechanical Properties of YBCO-123 Superconducting Nanoparticles Prepared by an Acetate-Based Sol-Gel Process. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3415-3423.	0.8	0
18	Investigation of structural, superconducting and mechanical properties of Co/Cu substituted YBCO-358 ceramic composites. Journal of Materials Science: Materials in Electronics, 2019, 30, 7400-7409.	1.1	6

#	Article	IF	CITATIONS
19	Comparison of theoretical and experimental microhardness of tetrahedral binary Zn1-xErxO semiconductor polycrystalline nanoparticles. Ceramics International, 2019, 45, 4176-4183.	2.3	3
20	Theoretical and experimental approaches to measuring mechanical properties of Zn1â^'xCoxO binary tetrahedral bulk semiconductors. Journal of Materials Science: Materials in Electronics, 2018, 29, 7971-7978.	1.1	3
21	Experimental and theoretical approaches for electrical, magnetic, micromechanical, and structural characterization of BSCCO ceramic superconductors. Ceramics International, 2018, 44, 11674-11681.	2.3	6
22	Comparison of Vickers microhardness of undoped and Ru doped BSCCO glass ceramic materials. Journal of Materials Science: Materials in Electronics, 2018, 29, 3957-3966.	1.1	12
23	Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique. Ceramics International, 2018, 44, 10306-10314.	2.3	21
24	Preparation, growth and characterization of nonvacuum Cu-doped ZnO thin films. Journal of Molecular Structure, 2018, 1165, 1-7.	1.8	57
25	The Effect of Ar Ambient Pressure and Annealing Duration on the Microstructure, Superconducting Properties and Activation Energies of MgB2 Superconductors. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1161-1169.	0.8	5
26	Experimental and theoretical approaches for magnetic, superconducting and structural characterization of Bi 1.75 Pb 0.25 Sr 2 Ca 2 Cu 3-x Sn x O 10+y glass ceramics. Cryogenics, 2017, 88, 17-21.	0.9	3
27	The influence of re-pelletization and heat treatment on physical, superconducting, magnetic and micro-mechanical properties of bulk BSCCO samples prepared by ammonium nitrate precipitation method. Ceramics International, 2017, 43, 15586-15592.	2.3	13
28	Microstructural and electrical characterizations of transparent Er-doped ZnO nano thin films prepared by sol–gel process. Journal of Materials Science: Materials in Electronics, 2017, 28, 14314-14322.	1.1	17
29	Effect of re-pelletization on structural, mechanical and superconducting properties of BSCCO superconductors. Journal of Materials Science: Materials in Electronics, 2017, 28, 1799-1803.	1.1	9
30	Experimental and theoretical approaches on thermal and structural properties of Zn doped BSCCO glass ceramics. Materials Science-Poland, 2016, 34, 25-32.	0.4	4
31	Changes in mechanical and structural properties of Bi-2212 added MgB2 superconductors. Journal of Materials Science: Materials in Electronics, 2016, 27, 6060-6070.	1.1	3
32	High-quality c-axis oriented non-vacuum Er doped ZnO thin films. Ceramics International, 2016, 42, 8085-8091.	2.3	35
33	A study on nucleation, crystallization kinetics, microstructure and mechanical properties of Ru–Bi partial substituted BSCCO glass ceramics. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1073-1082.	2.0	15
34	Structural, electrical and mechanical properties of selenium doped thallium based high-temperature superconductors. Cryogenics, 2016, 73, 1-7.	0.9	6
35	Effect of boron doping on the structural, optical and electrical properties of ZnO nanoparticles produced by the hydrothermal method. Ceramics International, 2015, 41, 11194-11201.	2.3	59
36	Structural and mechanical properties of (Co/Mg) co-doped nano ZnO. Ceramics International, 2015, 41, 6326-6334.	2.3	37

#	Article	IF	CITATIONS
37	Mechanical, microstructural and magnetic properties of the bulk BSCCO superconductor prepared by two different methods. Journal of Materials Science: Materials in Electronics, 2015, 26, 2622-2628.	1.1	10
38	Superconducting and mechanical properties of the bulk Bi(pb)SCCO system prepared via solid state and ammonium nitrate precipitation methods. Physica B: Condensed Matter, 2015, 472, 34-40.	1.3	8
39	Preparation, structural and micromechanical properties of (Al/Mg) co-doped ZnO nanoparticles by sol–gel process. Journal of Materials Science: Materials in Electronics, 2015, 26, 8147-8159.	1.1	18
40	Significant change in micro mechanical, structural and electrical properties of MgB2 superconducting ceramics depending on argon ambient pressure and annealing duration. Journal of Materials Science: Materials in Electronics, 2015, 26, 3840-3852.	1.1	8
41	Ac Susceptibility Measurements and Mechanical Performance of Bulk MgB2. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1943-1952.	0.8	10
42	Effect of annealing time on the structural, optical and electrical characteristics of DC sputtered ITO thin films. Journal of Materials Science: Materials in Electronics, 2014, 25, 4992-4999.	1.1	24
43	Evaluation of Microstructural and Mechanical Properties of Ag-Diffused Bulk MgB2 Superconductors. Journal of Superconductivity and Novel Magnetism, 2014, 27, 77-82.	0.8	6
44	The effect of Nd 2 O 3 addition on superconducting and structural properties and activation energy calculation of Bi-2212 superconducting system. Journal of Materials Science: Materials in Electronics, 2014, 25, 444-453.	1.1	9
45	Improvement of the Nature of Indentation Size Effect of Bi-2212 Superconducting Matrix by Doped Nd Inclusion and Theoretical Modeling of New Matrix. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1403-1412.	0.8	10
46	Structural and mechanical properties of ZnMgO nanoparticles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 590, 416-422.	2.6	53
47	Influence of different boron precursors on superconducting and mechanical properties of MgB2. Journal of Materials Science: Materials in Electronics, 2014, 25, 2737-2747.	1.1	11
48	Effect of Zn content on microstructure and mechanical performance in Bi1.8Sr2Ca2Cu3.2â^'xZnxO10+δ glass ceramic. Journal of Materials Science: Materials in Electronics, 2014, 25, 3116-3126.	1.1	13
49	Variation of Mechanical Properties of Cr Doped Bi-2212 Superconductors. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2949-2954.	0.8	13
50	A comprehensive study on mechanical properties of Bi1.8Pb0.4Sr2MnxCa2.2Cu3.0Oy superconductors. Journal of Materials Science: Materials in Electronics, 2013, 24, 2659-2666.	1.1	10
51	Analysis of indentation size effect (ISE) behavior in low-load Vickers microhardness testing of (Sm123)1â^x(Nd123)x superconductor system. Journal of Materials Science: Materials in Electronics, 2013, 24, 2218-2227.	1.1	16
52	Comparative study on mechanical properties of undoped and Ce-doped Bi-2212 superconductors. Journal of Materials Science: Materials in Electronics, 2013, 24, 2339-2345.	1.1	23
53	Experimental and theoretical approaches on mechanical evaluation of Y123 system by Lu addition. Journal of Materials Science: Materials in Electronics, 2013, 24, 2414-2421.	1.1	18
54	The role of Lu doping on microstructural and superconducting properties of Bi2Sr2CaLuxCu2Oy superconducting system. Journal of Materials Science: Materials in Electronics, 2013, 24, 1274-1281.	1.1	16

#	Article	IF	CITATIONS
55	Change of formation velocity of Bi-2212 superconducting phase with annealing ambient. Journal of Materials Science: Materials in Electronics, 2013, 24, 4643-4654.	1.1	6
56	Breaking point of the harmony between Gd diffused Bi-2223 slabs with diffusion annealing temperature. Journal of Materials Science: Materials in Electronics, 2013, 24, 4566-4573.	1.1	8
57	Structural and mechanical characterization of Bi1.75Pb0.25Sr2Ca2Cu3â^'xSnxO10+y superconductor ceramics using Vickers microhardness test. Journal of Materials Science: Materials in Electronics, 2013, 24, 4270-4278.	1.1	15
58	Investigation of microstructural, Vickers microhardness and superconducting properties of YBa2Cu3â^'xGdxO7â^'δ (0Ââ‰ÂxÂâ‰Â0.150) superconducting ceramics via experimental and theoretical approa Journal of Materials Science: Materials in Electronics, 2013, 24, 1264-1273.	adhæs.	13
59	Bayesian semiparametric models for nonignorable missing mechanisms in generalized linear models. Journal of Applied Statistics, 2013, 40, 1746-1763.	0.6	1
60	Investigation of indentation size effect (ISE) and micro-mechanical properties of Lu added Bi2Sr2CaCu2Oy ceramic superconductors. Journal of Materials Science: Materials in Electronics, 2013, 24, 230-238.	1.1	20
61	Role of diffusion-annealing time on the superconducting, microstructural and mechanical properties of Cu-diffused bulk MgB2 superconductor. Journal of Materials Science: Materials in Electronics, 2013, 24, 352-361.	1.1	23
62	Influence of diffusion-annealing temperature on physical and mechanical properties of Cu-diffused bulk MgB2 superconductor. Journal of Materials Science: Materials in Electronics, 2013, 24, 776-783.	1.1	12
63	Analysis of Indentation Size Effect on Mechanical Properties of Cu-Diffused Bulk MgB2 Superconductor Using Experimental and Different Theoretical Models. Journal of Superconductivity and Novel Magnetism, 2013, 26, 101-109.	0.8	17
64	Structural and mechanical properties of transition metals doped ZnMgO nanoparticles. Powder Technology, 2013, 235, 479-484.	2.1	38
65	The Effect of PbSe Addition on the Mechanical Properties of Bi-2212 Superconductors. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2297-2307.	0.8	33
66	Physical Properties and Diffusion-Coefficient Calculation of Iron Diffused Bi-2223 System. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2481-2487.	0.8	7
67	Effect of Ce Addition on the Magnetoresistivity, Irreversibility Field, Upper Critical Field and Activation Energies of Bi-2212 Superconducting Ceramics. Journal of Superconductivity and Novel Magnetism, 2012, 25, 893-903.	0.8	22
68	A Study on Magnetoresistivity, Activation Energy, Irreversibility and Upper Critical Field of Slightly Mn Added Bi-2223 Superconductor Ceramics. Journal of Superconductivity and Novel Magnetism, 2012, 25, 961-968.	0.8	30
69	Vickers hardness measurements and some physical properties of Pr2O3 doped Bi-2212 superconductors. Journal of Materials Science: Materials in Electronics, 2012, 23, 1001-1010.	1.1	53
70	Some physical properties and Vickers hardness measurements of Fe diffusion-doped Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy superconductors. Journal of Materials Science: Materials in Electronics, 2012, 23, 1235-1242.	1.1	15
71	Theoretical investigations of α,α,α-trifluoro-3, -p and o-nitrotoluene by means of density functional theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 85, 271-282.	2.0	7
72	The effect of Pr addition on superconducting and mechanical properties of Bi-2212 superconductors. Journal of Materials Science: Materials in Electronics, 2012, 23, 511-519.	1.1	42

#	Article	IF	CITATIONS
73	Investigation of mechanical and superconducting properties of iron diffusion-doped Bi-2223 superconductors. Journal of Materials Science: Materials in Electronics, 2011, 22, 1501-1508.	1.1	39
74	Influence of Diffusion-Annealing Temperature onÂtheÂPhysico-Mechanical Properties of Au-doped Bi-2223 Superconductors. Journal of Superconductivity and Novel Magnetism, 2011, 24, 381-390.	0.8	15
75	Effect of Gd addition on the activation energies of Bi-2223 superconductor. Physica B: Condensed Matter, 2011, 406, 705-709.	1.3	33
76	The effect of Au diffusion on some physical properties of Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy superconductors. Journal of Alloys and Compounds, 2009, 471, 142-146.	2.8	15
77	The influence of cooling rates on microstructure and mechanical properties of Bi _{1,6} Pb _{0,4} Sr ₂ Ca ₂ Cu ₃ O _y supercond Journal of Physics: Conference Series, 2009, 153, 012038.	d oct ors.	19
78	Influence of gold diffusion-doped on phase formation, superconducting and microstructure properties of Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oysuperconductors. Journal of Physics: Conference Series, 2009, 153, 012024.	0.3	4
79	The influence of Gd addition on microstructure and transport properties of Bi-2223. Physica B: Condensed Matter, 2008, 403, 3354-3359.	1.3	40
80	Calculation of the diffusion coefficient of Au in Bi-2223 superconductors. Journal of Physics Condensed Matter, 2007, 19, 346205.	0.7	15
81	Role of diffusion-annealing time on the mechanical properties of bulk Bi-2223 superconductors diffusion-doped with Au. Superconductor Science and Technology, 2007, 20, 365-371.	1.8	46
82	Substitution of Sm at Ca site in superconductors. Physica B: Condensed Matter, 2007, 399, 94-100.	1.3	36
83	The effect of cooling rates on properties of Bi1.7Pb0.35Sr1.9Ca2.1Cu3Oy superconductors produced by solid-state reaction method. Physica C: Superconductivity and Its Applications, 2007, 451, 113-117.	0.6	24
84	Effect of cooling rates on bare bulk and silver wrapped pellets of Bi-2223 superconductor. Physica C: Superconductivity and Its Applications, 2006, 434, 153-156.	0.6	32
85	Thermal expansion and Vickers hardness measurements on Bi1.6Pb0.4Sr2Ca2â^'xSmxCu3Oy superconductors. Physica C: Superconductivity and Its Applications, 2006, 442, 101-107.	0.6	67
86	Magnetic and electronic measurements in CeB6. Journal of Magnetism and Magnetic Materials, 2006, 298, 33-37.	1.0	4
87	Structural and physical properties of Sm-doped Bi1.6Pb0.4Sr2Ca2â^'xSmxCu3Oy superconductors. Physica C: Superconductivity and Its Applications, 2005, 423, 119-126.	0.6	74

The Nucleation Effect of PbSe Additive on Bi2Sr2CaCu2Ol Class Ceramics. Glass and Ceramics (English) Tj ETQq0 0.0 rgBT /Overlock 10