Tong D Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2581978/publications.pdf

Version: 2024-02-01

154 papers 5,932 citations

39 h-index 72 g-index

155 all docs

155
docs citations

155 times ranked 6027 citing authors

#	Article	IF	CITATIONS
1	In-situ imaging the electrochemical reactions of Li-CO2 nanobatteries at high temperatures in an aberration corrected environmental transmission electron microscope. Nano Research, 2022, 15, 542-550.	10.4	14
2	Significant suppression of void swelling and irradiation hardening in a nanograined/nanoprecipitated 14YWT-ODS steel irradiated by helium ions. Journal of Nuclear Materials, 2022, 559, 153418.	2.7	17
3	<i>In situ</i> observation of the electrochemical lithiation of a single MnO@C nanorod electrode with core/shell structure. Chemical Communications, 2022, 58, 879-882.	4.1	4
4	Exceptional thermal stability of ultrafine-grained long-period stacking ordered Mg alloy. Rare Metals, 2022, 41, 1537-1542.	7.1	3
5	Ultrafine-grained oxide-dispersion-strengthened 9Cr steel with exceptional strength and thermal stability. Nuclear Materials and Energy, 2022, 30, 101112.	1.3	1
6	Bulk nanocrystalline W-Ti alloys with exceptional mechanical properties and thermal stability. Journal of Materials Science and Technology, 2022, 114, 16-28.	10.7	8
7	Grain boundary status dependent mechanical property of annealed nanocrystalline Ni(Fe) alloy. Journal of Materials Research and Technology, 2022, 18, 1191-1204.	5 . 8	O
8	Capture capability of different intrinsic structures for helium bubbles in micro-nano composite 304L steels. Nuclear Materials and Energy, 2022, 32, 101224.	1.3	1
9	Bulk nanocrystalline boron-doped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity. Journal of Alloys and Compounds, 2021, 853, 155995.	5 . 5	17
10	Simultaneous sintering of low-melting-point Mg with high-melting-point Ti via a novel one-step high-pressure solid-phase sintering strategy. Journal of Alloys and Compounds, 2021, 858, 158344.	5.5	10
11	Stability of nanograins and nanoparticles in La-doped nanocrystalline steel irradiated with Fe ions. Nuclear Materials and Energy, 2021, 26, 100873.	1.3	1
12	Mg-Ti composites fabricated by a novel one-step high-pressure sintering: The correlationâ€,between microstructures andâ€,mechanical properties. Composites Part B: Engineering, 2021, 215, 108743.	12.0	13
13	Achieving ultra-strong Mg alloys via a novel hierarchical long-period stacking ordered architecture. Journal of Alloys and Compounds, 2021, 870, 159343.	5.5	10
14	Ultrastrong nanocrystalline oxide-dispersion-strengthened ferritic alloy with exceptional thermal stability. Materials Science & Degramor: Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 821, 141616.	5.6	12
15	Effects of grain boundaries and nano-precipitates on helium bubble behaviors in lanthanum-doped nanocrystalline steel. Scripta Materialia, 2021, 200, 113900.	5.2	11
16	Unmasking the anomalous rapid oxidation of refractory TiB2 at low temperatures. Journal of the European Ceramic Society, 2021, 41, 5100-5108.	5 . 7	12
17	In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition. Science Bulletin, 2021, 66, 1754-1763.	9.0	16
18	Superior high-temperature oxidation resistance of nanocrystalline 304 austenitic stainless steel containing a small amount of Si. Scripta Materialia, 2021, 204, 114155.	5.2	14

#	Article	IF	Citations
19	A primary study of the corrosion behavior and superior structure stability of Mg–Ti composites fabricated by high-pressure solid-state sintering. Journal of Materials Research and Technology, 2021, 15, 1705-1715.	5.8	6
20	Highly stable nanocrystalline oxide dispersion strengthened alloys with outstanding helium bubble suppression. Journal of Nuclear Materials, 2021, 557, 153283.	2.7	7
21	Micron-/nano-scale hierarchical structures and hydrogen storage mechanisms in a cast vanadium-based multicomponent alloy. Nano Energy, 2021, 90, 106588.	16.0	5
22	Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up. Nature Nanotechnology, 2020, 15, 94-98.	31.5	217
23	Smart 3D Network Nanocomposites Collect Irradiation-Induced "Trash― Matter, 2020, 3, 1631-1645.	10.0	9
24	In-situ imaging Co3O4 catalyzed oxygen reduction and evolution reactions in a solid state Na-O2 battery. Nano Energy, 2020, 77, 105289.	16.0	12
25	<i>ln situ</i> imaging electrocatalytic CO ₂ reduction and evolution reactions in all-solid-state Li–CO ₂ nanobatteries. Nanoscale, 2020, 12, 23967-23974.	5.6	12
26	A 2.9 GPa Strength Nano-Grained and Nano-Precipitated 304L-Type Austenitic Stainless Steel. Materials, 2020, 13, 5382.	2.9	3
27	<i>In Situ</i> Electrochemical Study of Na–O ₂ /CO ₂ Batteries in an Environmental Transmission Electron Microscope. ACS Nano, 2020, 14, 13232-13245.	14.6	27
28	Probing the Deformation Mechanisms of Nanocrystalline Silver by In-Situ Tension and Synchrotron X-ray Diffraction. Metals, 2020, 10, 1635.	2.3	4
29	Vacancy effect on the preparation of high-entropy carbides. Journal of Materials Science, 2020, 55, 6754-6760.	3.7	21
30	<i>In Situ</i> Observation of Sodium Dendrite Growth and Concurrent Mechanical Property Measurements Using an Environmental Transmission Electron Microscopy–Atomic Force Microscopy (ETEM-AFM) Platform. ACS Energy Letters, 2020, 5, 2546-2559.	17.4	35
31	Atomically Dispersed Co Catalyst for Efficient Hydrodeoxygenation of Lignin-Derived Species and Hydrogenation of Nitroaromatics. ACS Catalysis, 2020, 10, 8672-8682.	11.2	130
32	FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism. Intermetallics, 2020, 122, 106801.	3.9	21
33	MOF-derived Co/C nanocomposites encapsulated by Ni(OH)2 ultrathin nanosheets shell for high performance supercapacitors. Journal of Alloys and Compounds, 2019, 770, 803-812.	5.5	53
34	Turbostratic carbon-localised FeS ₂ nanocrystals as anodes for high-performance sodium-ion batteries. Nanoscale, 2019, 11, 15497-15507.	5.6	23
35	Influence of alloying elements on the thermal stability of ultra-fine-grained Ni alloys. Journal of Materials Science, 2019, 54, 10506-10515.	3.7	6
36	Compositional Design of Soft Magnetic High Entropy Alloys by Minimizing Magnetostriction Coefficient in (Fe0.3Co0.5Ni0.2)100â ⁻² x(Al1/3Si2/3)x System. Metals, 2019, 9, 382.	2.3	27

#	Article	IF	Citations
37	Novel plasma-engineered MoS2 nanosheets for superior lithium-ion batteries. Journal of Alloys and Compounds, 2019, 787, 996-1003.	5.5	40
38	In-situ imaging electrocatalysis in a Na-O2 battery with Au-coated MnO2 nanowires air cathode. Energy Storage Materials, 2019, 19, 48-55.	18.0	37
39	Effect of oxygen, nitrogen, and water on the carriers transport behaviors of nano-TiO2 particles. Materials Chemistry and Physics, 2018, 208, 143-148.	4.0	1
40	<i>In situ</i> study on surface roughening in radiation-resistant Ag nanowires. Nanotechnology, 2018, 29, 215708.	2.6	14
41	Selection of grain-boundary segregation elements for achieving stable and strong nanocrystalline Mg. Materials Science & Droperties, Microstructure and Processing, 2018, 717, 144-153.	5.6	26
42	Thermally stable and strong bulk Mg–MgO in situ nanocomposites by reactive cryomilling and high-pressure consolidation. Journal of Materials Science, 2018, 53, 6613-6625.	3.7	18
43	Ceramic nanowelding. Nature Communications, 2018, 9, 96.	12.8	24
44	Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer, 2018, 143, 324-330.	3.8	144
45	Synthesis of Mn3O4 nano-materials via CTAB/SDS vesicle templating for high performance supercapacitors. Materials Letters, 2018, 210, 128-132.	2.6	12
46	A bulk nanocrystalline Mg–Ti alloy with high thermal stability and strength. Materials Letters, 2018, 210, 121-123.	2.6	35
47	Photoelectronic behaviors of self-assembled ZnSe/ZnS/L-Cys quantum dots synthesized at low temperature. Journal of Materials Science: Materials in Electronics, 2018, 29, 4478-4487.	2.2	7
48	Prediction of Stable Iron Nitrides at Ambient and High Pressures with Progressive Formation of New Polynitrogen Species. Chemistry of Materials, 2018, 30, 8476-8485.	6.7	56
49	Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance. Nature Communications, 2018, 9, 5389.	12.8	88
50	Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures. Nanotechnology, 2018, 29, 494001.	2.6	2
51	Segregation induced hardening in annealed nanocrystalline Ni-Fe alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 354-360.	5.6	19
52	Probing the charging and discharging behavior of K-CO2 nanobatteries in an aberration corrected environmental transmission electron microscope. Nano Energy, 2018, 53, 544-549.	16.0	34
53	Enhanced transient photovoltaic characteristics of core–shell ZnSe/ZnS/L-Cys quantum-dot-sensitized TiO ₂ thin-film. Chinese Physics B, 2018, 27, 067305.	1.4	3
54	Microstructural origin of the ultra-low coercivity in bulk Fe65.5Cr4Mo4Ga4P12B5.5C5 metallic glasses. Journal of Magnetism and Magnetic Materials, 2018, 466, 130-132.	2.3	10

#	Article	IF	CITATIONS
55	Ultrahard bulk nanocrystalline VNbMoTaW high-entropy alloy. Journal of Alloys and Compounds, 2018, 769, 597-604.	5.5	40
56	Airâ€Stable Lithium Spheres Produced by Electrochemical Plating. Angewandte Chemie - International Edition, 2018, 57, 12750-12753.	13.8	24
57	Airâ€6table Lithium Spheres Produced by Electrochemical Plating. Angewandte Chemie, 2018, 130, 12932-12935.	2.0	12
58	In Situ Imaging the Oxygen Reduction Reactions of Solid State Na–O ₂ Batteries with CuO Nanowires as the Air Cathode. Nano Letters, 2018, 18, 3723-3730.	9.1	42
59	Low-temperature magnetization and magnetic exchange interactions in Fe 40 Ni 40 P 14 B 6 bulk metallic glasses. Journal of Magnetism and Magnetic Materials, 2017, 429, 276-280.	2.3	7
60	Ultralong cycling stability of carbon-nanotube/LiFePO4 nanocomposites as electrode materials for lithium-ion batteries. Electrochimica Acta, 2017, 232, 323-331.	5.2	55
61	One-pot synthesized mesoporous Ni–Co hydroxide for high performance supercapacitors. Ionics, 2017, 23, 1229-1238.	2.4	9
62	A thermally stable and strong Mg-MgF2 nanocomposite. Materials Letters, 2017, 209, 476-478.	2.6	6
63	Photogenerated carriers enhancement in Cu-doped ZnSe/ZnS/L-cys self-assembled core-shell quantum dots. Journal of Applied Physics, 2016, 120, .	2.5	9
64	Ultrahigh volumetric capacitance biomorphic porous carbon material derived from mold. Materials Letters, 2016, 184, 252-256.	2.6	27
65	Enhanced Negative Magnetoresistance with High Sensitivity of Polyaniline Interfaced with Nanotitania. Journal of the Electrochemical Society, 2016, 163, H664-H671.	2.9	14
66	Magnetoresistive polyaniline–silicon carbide metacomposites: plasma frequency determination and high magnetic field sensitivity. Physical Chemistry Chemical Physics, 2016, 18, 19536-19543.	2.8	31
67	Low power loss in Fe65.5Cr4Mo4Ga4P12B5.5C5 bulk metallic glasses. Journal of Alloys and Compounds, 2016, 658, 703-708.	5 . 5	6
68	Magnetic epoxy nanocomposites with superparamagnetic MnFe2O4 nanoparticles. AIP Advances, 2015, 5,	1.3	12
69	Influence of annealing on the mechanical property of iron- and nickel-based nanocrystalline alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 139-144.	5.6	17
70	Effects of metalloids on the thermal stability and glass forming ability of bulk ferromagnetic metallic glasses. Journal of Alloys and Compounds, 2015, 631, 60-66.	5.5	13
71	Carboxyl Multiwalled Carbonâ€Nanotubeâ€Stabilized Palladium Nanocatalysts toward Improved Methanol Oxidation Reaction. ChemElectroChem, 2015, 2, 559-570.	3.4	49
72	Influence of metalloids and annealing on the fundamental magnetic properties of bulk Fe–(Cr,Mo,Ga)–(P,B,C) metallic glasses. Intermetallics, 2015, 65, 111-116.	3.9	10

#	Article	IF	Citations
73	Multiwalled Carbon Nanotubes Composited with Palladium Nanocatalysts for Highly Efficient Ethanol Oxidation. Journal of the Electrochemical Society, 2015, 162, F755-F763.	2.9	36
74	Ultrafine FePd Nanoalloys Decorated Multiwalled Cabon Nanotubes toward Enhanced Ethanol Oxidation Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23920-23931.	8.0	56
75	Electropolymerized polyaniline/manganese iron oxide hybrids with an enhanced color switching response and electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 20778-20790.	10.3	55
76	Flameâ€Retardant Polypropylene/Multiwall Carbon Nanotube Nanocomposites: Effects of Surface Functionalization and Surfactant Molecular Weight. Macromolecular Chemistry and Physics, 2014, 215, 327-340.	2.2	75
77	Electromagnetic Field Absorbing Polypropylene Nanocomposites with Tuned Permittivity and Permeability by Nanoiron and Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 24784-24796.	3.1	86
78	Iron-core carbon-shell nanoparticles reinforced electrically conductive magnetic epoxy resin nanocomposites with reduced flammability. RSC Advances, 2013, 3, 9453.	3.6	49
79	Effect of nano-metal particles on the fracture toughness of metal–ceramic composite. Materials & Design, 2013, 45, 67-71.	5.1	40
80	A combined dislocation–cohesive zone model for fracture in nanocrystalline materials. Journal of Materials Research, 2012, 27, 694-700.	2.6	5
81	Coupled effects of grain size and orientation on properties of nanocrystalline materials. Computational Materials Science, 2012, 58, 175-182.	3.0	11
82	Grain rotation dependent fracture toughness of nanocrystalline materials. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7684-7687.	5.6	19
83	Effects of ultrafine nanograins on the fracture toughness of nanocrystalline materials. Journal of Materials Research, 2011, 26, 1734-1741.	2.6	10
84	What is the theoretical density of a nanocrystalline material?. Acta Materialia, 2008, 56, 3663-3671.	7.9	51
85	Radiation tolerance in a nanostructure: Is smaller better?. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 921-925.	1.4	112
86	The effect of low temperature annealing on the structure of Gd5Si2Ge2 alloy. Journal of Alloys and Compounds, 2007, 431, 89-92.	5.5	5
87	Enhanced radiation tolerance in nanocrystalline MgGa2O4. Applied Physics Letters, 2007, 90, .	3.3	268
88	Thermomechanics of Nanocrystalline Nickel under High Pressureâ-'Temperature Conditions. Nano Letters, 2007, 7, 426-432.	9.1	33
89	Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation. Acta Materialia, 2007, 55, 5007-5013.	7.9	91
90	Structure and properties of bulk nanostructured alloys synthesized by flux-melting. Journal of Materials Science, 2007, 42, 1638-1648.	3.7	15

#	Article	IF	Citations
91	HighP–T Nano-Mechanics of Polycrystalline Nickel. Nanoscale Research Letters, 2007, 2, 476-91.	5 . 7	9
92	Less is more. Nature Materials, 2006, 5, 515-516.	27.5	63
93	Dislocation propagation versus dislocation nucleation. Nature Materials, 2006, 5, 841-841.	27.5	5
94	Structure and phase transformation of melt-spun Gd5Si2Ge2. Thermochimica Acta, 2006, 445, 53-56.	2.7	7
95	Lowering critical cooling rate for forming bulk metallic glass. Applied Physics Letters, 2006, 88, 091903.	3.3	23
96	Fabrication and Characterization of Nanostructured CuAg (Ag-40at%Cu). Microscopy and Microanalysis, 2005, 11 , .	0.4	2
97	Soft magnetism in mechanically alloyed nanocrystalline materials. Physical Review B, 2005, 72, .	3.2	92
98	Bulk nanostructured alloys prepared by flux melting and melt solidification. Applied Physics Letters, 2005, 87, 141906.	3.3	25
99	Thermoelastic and texture behavior of aluminum at high pressure and high temperature investigated byin situneutron diffraction. Journal of Applied Physics, 2004, 95, 4645-4650.	2.5	23
100	A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13699-13702.	7.1	153
101	Soft ferromagnetism in amorphous and nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 2004, 283, 223-230.	2.3	50
102	Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Materialia, 2004, 52, 995-1002.	7.9	263
103	Correlation between the volume change during crystallization and the thermal stability of supercooled liquids. Applied Physics Letters, 2003, 83, 4512-4514.	3.3	47
104	Atom probe studies of metallic glasses. Journal of Non-Crystalline Solids, 2003, 317, 10-16.	3.1	18
105	Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers. Journal of Materials Research, 2003, 18, 1600-1606.	2.6	37
106	Crystallization kinetics in small volumes of undercooled liquid. Philosophical Magazine Letters, 2003, 83, 503-509.	1.2	2
107	Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy. Journal of Applied Physics, 2002, 91, 5240-5245.	2.5	130
108	Boron suboxide: As hard as cubic boron nitride. Applied Physics Letters, 2002, 81, 643-645.	3.3	264

#	Article	IF	CITATIONS
109	Bulk Fe-Based Metallic Glass with Extremely Soft Ferromagnetic Properties. Materials Science Forum, 2002, 386-388, 441-446.	0.3	32
110	Atom probe tomography study of the decomposition of a bulk metallic glass. Intermetallics, 2002, 10, 1047-1052.	3.9	33
111	Thermal conductivity of Pd40Ni40â^'xCuxP20 metallic glasses. Scripta Materialia, 2002, 47, 411-414.	5.2	48
112	Superhard B–C–N materials synthesized in nanostructured bulks. Journal of Materials Research, 2002, 17, 3139-3145.	2.6	222
113	Bulk ferromagnetic glasses in the Fe–Ni–P–B System. Acta Materialia, 2001, 49, 837-847.	7.9	117
114	Possible evidence for the stabilization of $\hat{l}^2\hat{a}\in$ "carbon nitride by high-energy ball milling. Journal of Materials Research, 1999, 14, 2488-2499.	2.6	19
115	Paramagnetism, superparamagnetism, and spin-glass behavior in bulk amorphous Pd–Ni–Fe–P alloys. Journal of Applied Physics, 1999, 85, 4110-4119.	2.5	35
116	Bulk ferromagnetic glasses prepared by flux melting and water quenching. Applied Physics Letters, 1999, 75, 49-51.	3.3	299
117	Bulk amorphous Pd–Ni–Fe–P alloys: Preparation and characterization. Journal of Materials Research, 1999, 14, 2107-2115.	2.6	54
118	Bulk amorphous metallic alloys: Synthesis by fluxing techniques and properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 1795-1804.	2.2	61
119	Microstructural and Structural Changes in Si and C Induced by Mechanical Attrition. Materials Science Forum, 1997, 235-238, 487-496.	0.3	3
120	Photoluminescence from mechanically milled Si and SiO2 spowders. Physical Review B, 1997, 55, 7615-7623.	3.2	40
121	Solid-state reaction in nanocrystalline Fe/SiC composites prepared by mechanical alloying. Journal of Materials Science, 1997, 32, 3835-3839.	3.7	23
122	Vanadium-spinel composites for structural applications in hostile environments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 234-236, 1091-1094.	5.6	1
123	Mössbauer investigation of intermixing during ball milling ofFe0.3Cr0.7andFe0.5W0.5powder mixtures. Physical Review B, 1996, 54, 12775-12786.	3.2	50
124	Structural disorder and phase transformation in graphite produced by ball milling. Scripta Materialia, 1996, 7, 393-399.	0.5	113
125	Formation, solid solution hardening and softening of nanocrystalline solid solutions prepared by mechanical attrition. Acta Materialia, 1996, 44, 753-761.	7.9	100
126	On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying. Journal of Materials Research, 1995, 10, 2892-2896.	2.6	227

#	Article	IF	Citations
127	The Influence of Dislocation Structure on Formation of Nanocrystals by Mechanical Attrition. Materials Science Forum, 1995, 179-181, 17-24.	0.3	28
128	The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling. Journal of Materials Research, 1995, 10, 139-148.	2.6	216
129	Formation and hardening effects in nanocrystalline Tiî—,N alloys prepared by mechanical alloying. Scripta Materialia, 1995, 5, 615-629.	0.5	21
130	Amorphous phase growth by isothermal annealing-induced interdiffusion reactions in mechanically deformed Ni/Ti multilayered composites. Journal of Materials Science, 1994, 29, 2981-2986.	3.7	5
131	Structural evolutions of Niî—,Ti systems caused by mechanical alloying in different atmospheres. Materials Science & Dipineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 215-219.	5.6	8
132	The structure and Compton profile of nanocrystalline graphite produced by Mill grinding. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 193, 298-304.	2.1	3
133	Synthesis of Al-based metastable alloys by mechanical milling Al and amorphous Fe ₇₈ Si ₁₂ B ₁₀ powders. Journal of Materials Research, 1994, 9, 866-874.	2.6	3
134	Mechanical Hardness as a Probe of Nanocrystalline Materials. Materials Research Society Symposia Proceedings, 1994, 362, 253.	0.1	4
135	Hall-Petch relationship in nanocrystalline titanium produced by ball-milling. Journal of Materials Science Letters, 1993, 12, 1818-1820.	0.5	33
136	Solid state amorphization reactions in Ni/Ti multilayer composites prepared by cold rolling. Journal of Materials Science, 1993, 28, 394-398.	3.7	12
137	Characteristics of the mechanically-alloyed Ni60Ti40 amorphous powders during mechanical milling in different atmospheres. Journal of Materials Science, 1993, 28, 6474-6478.	3.7	10
138	Calculation of the temperature for formation of competing intermetallic compounds in multilayers. Materials Letters, 1993, 17, 258-262.	2.6	3
139	Solid state amorphization transformations induced by mechanical alloying. Journal of Alloys and Compounds, 1993, 194, 325-330.	5.5	5
140	Formation of amorphous Geâ€6 semiconductor alloys by mechanical alloying. Applied Physics Letters, 1993, 63, 1637-1639.	3.3	8
141	Amorphous Phase Formation in the Fe-W System Induced by Mechanical Alloying. Materials Science Forum, 1992, 88-90, 391-398.	0.3	12
142	Amorphous phase transition mechanism by the mechanical alloying of the Fe–W system. Journal of Applied Physics, 1992, 71, 1967-1971.	2.5	28
143	Self-sustaining reaction during mechanical alloying of Ni60Ti40 in oxygen atmosphere. Scripta Metallurgica Et Materialia, 1992, 26, 933-937.	1.0	6
144	The influence of atmosphere on the amorphization reaction by mechanical alloying for the Niî—,Ti system. Journal of Non-Crystalline Solids, 1992, 150, 456-459.	3.1	0

#	Article	IF	CITATIONS
145	Amorphization induced by mechanical alloying and cold rolling. Journal of Non-Crystalline Solids, 1992, 150, 464-467.	3.1	2
146	Preparation and reactivities of composite nanocrystalline solids prepared by mechanical alloying. Journal of Non-Crystalline Solids, 1992, 150, 468-471.	3.1	1
147	Different transformation paths of the amorphization reaction by mechanical alloying in different atmospheres. Journal of Materials Science Letters, 1992, 11, 129-131.	0.5	3
148	Effect of atmosphere on further milling mechanically alloyed Ni60Ti40 amorphous powders. Journal of Materials Science Letters, 1992, 11, 1170-1172.	0.5	3
149	Formation of nanocrystalline Fe/SiC composite by mechanical alloying. Journal of Materials Science Letters, 1992, 11, 1576-1578.	0.5	11
150	Solid state displacement reaction of Fe and CuO induced by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 151, 189-195.	5.6	27
151	Amorphization reaction during mechanical alloying: Influence of the milling atmospheres. Scripta Metallurgica Et Materialia, 1991, 25, 2227-2231.	1.0	25
152	Displacement reaction between Fe and CuO induced by mechanical alloying. Scripta Metallurgica Et Materialia, 1991, 25, 2143-2146.	1.0	6
153	Investigation of the amorphization reaction induced by amorphous phase through mechanical milling. Journal of Applied Physics, 1991, 70, 7158-7160.	2.5	6
154	V/MgAl2O4 Composites for Hostile Environment Applications - Part II: Properties. Ceramic Engineering and Science Proceedings, 0, , 163-170.	0.1	0