Xue Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2581531/publications.pdf

Version: 2024-02-01

257101 253896 2,659 45 24 43 citations h-index g-index papers 46 46 46 2412 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A {Ni ₁₂ }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angewandte Chemie - International Edition, 2022, 61, e202115585.	7.2	12
2	A {Ni ₁₂ }â€Wheelâ€Based Metalâ€"Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angewandte Chemie, 2022, 134, .	1.6	1
3	Titelbild: A {Ni ₁₂ }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide (Angew. Chem. 6/2022). Angewandte Chemie, 2022, 134, .	1.6	O
4	High capacity ammonia adsorption in a robust metal–organic framework mediated by reversible host–guest interactions. Chemical Communications, 2022, 58, 5753-5756.	2.2	6
5	Direct Observation of Ammonia Storage in UiO-66 Incorporating Cu(II) Binding Sites. Journal of the American Chemical Society, 2022, 144, 8624-8632.	6.6	24
6	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	11,1	82
7	Cascade adsorptive separation of light hydrocarbons by commercial zeolites. Journal of Energy Chemistry, 2022, 72, 299-305.	7.1	5
8	Efficient Photocatalytic Reduction of CO ₂ Catalyzed by the Metal–Organic Framework MFM-300(Ga). CCS Chemistry, 2022, 4, 2560-2569.	4.6	9
9	Direct Visualization of Supramolecular Binding and Separation of Light Hydrocarbons in MFM-300(In). Chemistry of Materials, 2022, 34, 5698-5705.	3.2	11
10	Highly Efficient Proton Conduction in the Metal–Organic Framework Material MFM-300(Cr)·SO ₄ (H ₃ O) ₂ . Journal of the American Chemical Society, 2022, 144, 11969-11974.	6.6	26
11	Enhanced proton conductivity in a flexible metal–organic framework promoted by single-crystal-to-single-crystal transformation. Chemical Communications, 2021, 57, 65-68.	2.2	14
12	Investigations of Hydrocarbon Species on Solid Catalysts by Inelastic Neutron Scattering. Topics in Catalysis, 2021, 64, 593-602.	1.3	3
13	Ultra-thin g-C ₃ N ₄ /MFM-300(Fe) heterojunctions for photocatalytic aerobic oxidation of benzylic carbon centers. Materials Advances, 2021, 2, 5144-5149.	2.6	6
14	Binding and separation of CO ₂ , SO ₂ and C ₂ H ₂ in homo- and hetero-metallic metal–organic framework materials. Journal of Materials Chemistry A, 2021, 9, 7190-7197.	5.2	17
15	Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chemical Society Reviews, 2021, 50, 11270-11292.	18.7	102
16	Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angewandte Chemie, 2021, 133, 6600-6606.	1.6	17
17	High Ammonia Adsorption in MFM-300 Materials: Dynamics and Charge Transfer in Host–Guest Binding. Journal of the American Chemical Society, 2021, 143, 3153-3161.	6.6	67
18	Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angewandte Chemie - International Edition, 2021, 60, 6526-6532.	7.2	62

#	Article	IF	CITATIONS
19	Control of zeolite microenvironment for propene synthesis from methanol. Nature Communications, 2021, 12, 822.	5.8	23
20	Exceptional Packing Density of Ammonia in a Dual-Functionalized Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 6586-6592.	6.6	37
21	The Origin of Catalytic Benzylic Câ^'H Oxidation over a Redoxâ€Active Metal–Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 15243-15247.	7.2	15
22	The Origin of Catalytic Benzylic Câ^'H Oxidation over a Redoxâ€Active Metal–Organic Framework. Angewandte Chemie, 2021, 133, 15371-15375.	1.6	0
23	Construction of C-C bonds via photoreductive coupling of ketones and aldehydes in the metal-organic-framework MFM-300(Cr). Nature Communications, 2021, 12, 3583.	5.8	35
24	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie, 2021, 133, 15669-15675.	1.6	11
25	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie - International Edition, 2021, 60, 15541-15547.	7.2	51
26	Atomically Dispersed Copper Sites in a Metal–Organic Framework for Reduction of Nitrogen Dioxide. Journal of the American Chemical Society, 2021, 143, 10977-10985.	6.6	66
27	Pore Distortion in a Metal–Organic Framework for Regulated Separation of Propane and Propylene. Journal of the American Chemical Society, 2021, 143, 19300-19305.	6.6	72
28	Quantitative production of butenes from biomass-derived \hat{I}^3 -valerolactone catalysed by hetero-atomic MFI zeolite. Nature Materials, 2020, 19, 86-93.	13.3	74
29	Quantitative Electro-Reduction of CO ₂ to Liquid Fuel over Electro-Synthesized Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 17384-17392.	6.6	73
30	Adsorption of Nitrogen Dioxide in a Redox-Active Vanadium Metal–Organic Framework Material. Journal of the American Chemical Society, 2020, 142, 15235-15239.	6.6	50
31	Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode. Nature Communications, 2020, 11, 5464.	5.8	62
32	Guest-Controlled Incommensurate Modulation in a Meta-Rigid Metal–Organic Framework Material. Journal of the American Chemical Society, 2020, 142, 19189-19197.	6.6	24
33	Refinement of pore size at sub-angstrom precision in robust metal–organic frameworks for separation of xylenes. Nature Communications, 2020, 11, 4280.	5.8	61
34	Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science, 2020, 368, 1002-1006.	6.0	179
35	Analysis by synchrotron X-ray scattering of the kinetics of formation of an Fe-based metal-organic framework with high CO2 adsorption. APL Materials, 2019, 7, 111104.	2.2	4
36	Iodine Adsorption in a Redox-Active Metal–Organic Framework: Electrical Conductivity Induced by Hostâ~'Guest Charge-Transfer. Inorganic Chemistry, 2019, 58, 14145-14150.	1.9	74

#	Article	IF	Citations
37	Post-synthetic modulation of the charge distribution in a metal–organic framework for optimal binding of carbon dioxide and sulfur dioxide. Chemical Science, 2019, 10, 1472-1482.	3.7	62
38	Porous metal–organic frameworks as emerging sorbents for clean air. Nature Reviews Chemistry, 2019, 3, 108-118.	13.8	202
39	Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework. Nature Chemistry, 2019, 11, 1085-1090.	6.6	116
40	Reversible coordinative binding and separation of sulfur dioxide in a robust metal–organic framework with open copper sites. Nature Materials, 2019, 18, 1358-1365.	13.3	171
41	Enhancement of CO ₂ Uptake and Selectivity in a Metal–Organic Framework by the Incorporation of Thiophene Functionality. Inorganic Chemistry, 2018, 57, 5074-5082.	1.9	50
42	Comparison of two multifunctional catalysts $[M/Nb < sub > 2 < / sub > 0 < sub > 5 < / sub > (M = Pd, Pt)]$ for one-pot hydrodeoxygenation of lignin. Catalysis Science and Technology, 2018, 8, 6129-6136.	2.1	26
43	Exceptional Adsorption and Binding of Sulfur Dioxide in a Robust Zirconium-Based Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 15564-15567.	6.6	149
44	Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nature Materials, 2018, 17, 691-696.	13.3	162
45	Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nature Communications, 2017, 8, 16104.	5.8	346