
## Xue Han

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2581531/publications.pdf Version: 2024-02-01



YHE HAN

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nature<br>Communications, 2017, 8, 16104.                                                      | 5.8  | 346       |
| 2  | Porous metal–organic frameworks as emerging sorbents for clean air. Nature Reviews Chemistry, 2019, 3, 108-118.                                                                          | 13.8 | 202       |
| 3  | Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science, 2020, 368, 1002-1006.                                                                            | 6.0  | 179       |
| 4  | Reversible coordinative binding and separation of sulfur dioxide in a robust metal–organic framework with open copper sites. Nature Materials, 2019, 18, 1358-1365.                      | 13.3 | 171       |
| 5  | Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nature<br>Materials, 2018, 17, 691-696.                                                        | 13.3 | 162       |
| 6  | Exceptional Adsorption and Binding of Sulfur Dioxide in a Robust Zirconium-Based Metal–Organic<br>Framework. Journal of the American Chemical Society, 2018, 140, 15564-15567.           | 6.6  | 149       |
| 7  | Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework.<br>Nature Chemistry, 2019, 11, 1085-1090.                                                 | 6.6  | 116       |
| 8  | Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism.<br>Chemical Society Reviews, 2021, 50, 11270-11292.                                          | 18.7 | 102       |
| 9  | How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34, .                                                                                    | 11.1 | 82        |
| 10 | lodine Adsorption in a Redox-Active Metal–Organic Framework: Electrical Conductivity Induced by<br>Hostâ^'Guest Charge-Transfer. Inorganic Chemistry, 2019, 58, 14145-14150.             | 1.9  | 74        |
| 11 | Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic<br>MFI zeolite. Nature Materials, 2020, 19, 86-93.                                    | 13.3 | 74        |
| 12 | Quantitative Electro-Reduction of CO <sub>2</sub> to Liquid Fuel over Electro-Synthesized<br>Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 17384-17392. | 6.6  | 73        |
| 13 | Pore Distortion in a Metal–Organic Framework for Regulated Separation of Propane and Propylene.<br>Journal of the American Chemical Society, 2021, 143, 19300-19305.                     | 6.6  | 72        |
| 14 | High Ammonia Adsorption in MFM-300 Materials: Dynamics and Charge Transfer in Host–Guest Binding.<br>Journal of the American Chemical Society, 2021, 143, 3153-3161.                     | 6.6  | 67        |
| 15 | Atomically Dispersed Copper Sites in a Metal–Organic Framework for Reduction of Nitrogen Dioxide.<br>Journal of the American Chemical Society, 2021, 143, 10977-10985.                   | 6.6  | 66        |
| 16 | Post-synthetic modulation of the charge distribution in a metal–organic framework for optimal<br>binding of carbon dioxide and sulfur dioxide. Chemical Science, 2019, 10, 1472-1482.    | 3.7  | 62        |
| 17 | Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode. Nature Communications, 2020, 11, 5464.                                         | 5.8  | 62        |
| 18 | Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angewandte Chemie -<br>International Edition, 2021, 60, 6526-6532.                                          | 7.2  | 62        |

Xue Han

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Refinement of pore size at sub-angstrom precision in robust metal–organic frameworks for separation of xylenes. Nature Communications, 2020, 11, 4280.                                                              | 5.8 | 61        |
| 20 | Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by<br>Host–Guest Interactions. Angewandte Chemie - International Edition, 2021, 60, 15541-15547.                                | 7.2 | 51        |
| 21 | Enhancement of CO <sub>2</sub> Uptake and Selectivity in a Metal–Organic Framework by the Incorporation of Thiophene Functionality. Inorganic Chemistry, 2018, 57, 5074-5082.                                       | 1.9 | 50        |
| 22 | Adsorption of Nitrogen Dioxide in a Redox-Active Vanadium Metal–Organic Framework Material.<br>Journal of the American Chemical Society, 2020, 142, 15235-15239.                                                    | 6.6 | 50        |
| 23 | Exceptional Packing Density of Ammonia in a Dual-Functionalized Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 6586-6592.                                                            | 6.6 | 37        |
| 24 | Construction of C-C bonds via photoreductive coupling of ketones and aldehydes in the metal-organic-framework MFM-300(Cr). Nature Communications, 2021, 12, 3583.                                                   | 5.8 | 35        |
| 25 | Comparison of two multifunctional catalysts [M/Nb <sub>2</sub> O <sub>5</sub> (M = Pd, Pt)] for one-pot hydrodeoxygenation of lignin. Catalysis Science and Technology, 2018, 8, 6129-6136.                         | 2.1 | 26        |
| 26 | Highly Efficient Proton Conduction in the Metal–Organic Framework Material<br>MFM-300(Cr)·SO <sub>4</sub> (H <sub>3</sub> O) <sub>2</sub> . Journal of the American Chemical<br>Society, 2022, 144, 11969-11974.    | 6.6 | 26        |
| 27 | Guest-Controlled Incommensurate Modulation in a Meta-Rigid Metal–Organic Framework Material.<br>Journal of the American Chemical Society, 2020, 142, 19189-19197.                                                   | 6.6 | 24        |
| 28 | Direct Observation of Ammonia Storage in UiO-66 Incorporating Cu(II) Binding Sites. Journal of the<br>American Chemical Society, 2022, 144, 8624-8632.                                                              | 6.6 | 24        |
| 29 | Control of zeolite microenvironment for propene synthesis from methanol. Nature Communications, 2021, 12, 822.                                                                                                      | 5.8 | 23        |
| 30 | Binding and separation of CO <sub>2</sub> , SO <sub>2</sub> and C <sub>2</sub> H <sub>2</sub> in homo- and hetero-metallic metal–organic framework materials. Journal of Materials Chemistry A, 2021, 9, 7190-7197. | 5.2 | 17        |
| 31 | Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angewandte Chemie, 2021, 133, 6600-6606.                                                                                               | 1.6 | 17        |
| 32 | The Origin of Catalytic Benzylic Câ^'H Oxidation over a Redoxâ€Active Metal–Organic Framework.<br>Angewandte Chemie - International Edition, 2021, 60, 15243-15247.                                                 | 7.2 | 15        |
| 33 | Enhanced proton conductivity in a flexible metal–organic framework promoted by<br>single-crystal-to-single-crystal transformation. Chemical Communications, 2021, 57, 65-68.                                        | 2.2 | 14        |
| 34 | A {Ni <sub>12</sub> }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of Sulphur<br>Dioxide and Nitrogen Dioxide. Angewandte Chemie - International Edition, 2022, 61, e202115585.                   | 7.2 | 12        |
| 35 | Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by<br>Host–Guest Interactions. Angewandte Chemie, 2021, 133, 15669-15675.                                                       | 1.6 | 11        |
| 36 | Direct Visualization of Supramolecular Binding and Separation of Light Hydrocarbons in MFM-300(In).<br>Chemistry of Materials, 2022, 34, 5698-5705.                                                                 | 3.2 | 11        |

Xue Han

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Efficient Photocatalytic Reduction of CO <sub>2</sub> Catalyzed by the Metal–Organic Framework MFM-300(Ga). CCS Chemistry, 2022, 4, 2560-2569.                                                    | 4.6 | 9         |
| 38 | Ultra-thin g-C <sub>3</sub> N <sub>4</sub> /MFM-300(Fe) heterojunctions for photocatalytic aerobic oxidation of benzylic carbon centers. Materials Advances, 2021, 2, 5144-5149.                  | 2.6 | 6         |
| 39 | High capacity ammonia adsorption in a robust metal–organic framework mediated by reversible<br>host–guest interactions. Chemical Communications, 2022, 58, 5753-5756.                             | 2.2 | 6         |
| 40 | Cascade adsorptive separation of light hydrocarbons by commercial zeolites. Journal of Energy<br>Chemistry, 2022, 72, 299-305.                                                                    | 7.1 | 5         |
| 41 | Analysis by synchrotron X-ray scattering of the kinetics of formation of an Fe-based metal-organic framework with high CO2 adsorption. APL Materials, 2019, 7, 111104.                            | 2.2 | 4         |
| 42 | Investigations of Hydrocarbon Species on Solid Catalysts by Inelastic Neutron Scattering. Topics in Catalysis, 2021, 64, 593-602.                                                                 | 1.3 | 3         |
| 43 | A {Ni <sub>12</sub> }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of Sulphur<br>Dioxide and Nitrogen Dioxide. Angewandte Chemie, 2022, 134, .                                  | 1.6 | 1         |
| 44 | The Origin of Catalytic Benzylic Câ^'H Oxidation over a Redoxâ€Active Metal–Organic Framework.<br>Angewandte Chemie, 2021, 133, 15371-15375.                                                      | 1.6 | 0         |
| 45 | Titelbild: A {Ni <sub>12</sub> }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of<br>Sulphur Dioxide and Nitrogen Dioxide (Angew. Chem. 6/2022). Angewandte Chemie, 2022, 134, . | 1.6 | Ο         |