Zhi-Bin Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2581299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological Characteristics and Transcriptomic Dissection in Two Root Segments with Contrasting Net Fluxes of Ammonium and Nitrate of Poplar Under Low Nitrogen Availability. Plant and Cell Physiology, 2022, 63, 30-44.	3.1	9
2	Sulfur metabolism, organic acid accumulation and phytohormone regulation are crucial physiological processes modulating the different tolerance to Pb stress of two contrasting poplars. Tree Physiology, 2022, 42, 1799-1811.	3.1	7
3	Genome-Wide Identification and Characterization of Long Noncoding RNAs in Populus × canescens Roots Treated With Different Nitrogen Fertilizers. Frontiers in Plant Science, 2022, 13, .	3.6	3
4	Lead exposure-induced defense responses result in low lead translocation from the roots to aerial tissues of two contrasting poplar species. Environmental Pollution, 2021, 271, 116346.	7.5	14
5	Dissecting MicroRNA–mRNA Regulatory Networks Underlying Sulfur Assimilation and Cadmium Accumulation in Poplar Leaves. Plant and Cell Physiology, 2020, 61, 1614-1630.	3.1	17
6	Physiological characteristics and RNA sequencing in two root zones with contrasting nitrate assimilation of Populus × canescens. Tree Physiology, 2020, 40, 1392-1404.	3.1	9
7	Competing Endogenous RNA Networks Underlying Anatomical and Physiological Characteristics of Poplar Wood in Acclimation to Low Nitrogen Availability. Plant and Cell Physiology, 2019, 60, 2478-2495.	3.1	26
8	Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens. Journal of Hazardous Materials, 2019, 362, 275-285.	12.4	88
9	Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant, Cell and Environment, 2019, 42, 1087-1103.	5.7	113
10	Phenylalanine as a nitrogen source induces root growth and nitrogen-use efficiency in Populus × canescens. Tree Physiology, 2018, 38, 66-82.	3.1	38
11	Sulfur nutrition stimulates lead accumulation and alleviates its toxicity in Populus deltoides. Tree Physiology, 2018, 38, 1724-1741.	3.1	15
12	Phosphorus assimilation of Chinese fir from two provenances during acclimation to changing phosphorus availability. Environmental and Experimental Botany, 2018, 153, 21-34.	4.2	22
13	Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes in poplars exposed to high temperature and drought. Scientific Reports, 2017, 7, 43215.	3.3	72
14	Uncovering the physiological mechanisms that allow nitrogen availability to affect drought acclimation in Catalpa bungei. Tree Physiology, 2017, 37, 1453-1456.	3.1	10
15	Exogenous glutathione enhances cadmium accumulation and alleviates its toxicity in Populus × canescens. Tree Physiology, 2017, 37, 1697-1712.	3.1	79
16	Physiological and transcriptional regulation in poplar roots and leaves during acclimation to high temperature and drought. Physiologia Plantarum, 2016, 157, 38-53.	5.2	29
17	Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnology Advances, 2016, 34, 1131-1148.	11.7	283
18	The conserved salt-responsive genes in the roots of Populus×canescens and Arabidopsis thaliana. Environmental and Experimental Botany, 2016, 129, 48-56.	4.2	23

Zhi-Bin Luo

#	Article	IF	CITATIONS
19	Phosphorus and nitrogen physiology of two contrasting poplar genotypes when exposed to phosphorus and/or nitrogen starvation. Tree Physiology, 2016, 36, 22-38.	3.1	103
20	Overexpression of bacterial $\hat{l}^3 \hat{a} \in g$ lutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytologist, 2015, 205, 240-254.	7.3	214
21	Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiology, 2015, 35, 1283-1302.	3.1	131
22	Exogenous abscisic acid alleviates zinc uptake and accumulation in <scp><i>P</i></scp> <i>opulus</i> A— <i>canescens</i> exposed to excess zinc. Plant, Cell and Environment, 2015, 38, 207-223.	5.7	129
23	Ectomycorrhizas with <i><scp>P</scp>axillus involutus</i> enhance cadmium uptake and tolerance in <i><scp>P</scp>opulus</i> × <i>canescens</i> . Plant, Cell and Environment, 2014, 37, 627-642.	5.7	118
24	The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environmental and Experimental Botany, 2014, 108, 47-62.	4.2	125
25	Anatomical, physiological and transcriptional responses of two contrasting poplar genotypes to drought and reâ€watering. Physiologia Plantarum, 2014, 151, 480-494.	5.2	72
26	Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta, 2013, 237, 919-931.	3.2	112
27	Changes in carbon, nutrients and stoichiometric relations under different soil depths, plant tissues and ages in black locust plantations. Acta Physiologiae Plantarum, 2013, 35, 2951-2964.	2.1	48
28	Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. Journal of Experimental Botany, 2013, 64, 4207-4224.	4.8	180
29	Cadmium tolerance in six poplar species. Environmental Science and Pollution Research, 2013, 20, 163-174.	5.3	157
30	A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in <i>Populus</i> × <i>canescens</i> Â. Plant Physiology, 2013, 162, 424-439.	4.8	187
31	N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species. Journal of Experimental Botany, 2012, 63, 6173-6185.	4.8	131
32	Net cadmium flux and accumulation reveal tissueâ€specific oxidative stress and detoxification in <i>Populus × canescens</i> . Physiologia Plantarum, 2011, 143, 50-63.	5.2	194
33	The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environmental and Experimental Botany, 2011, 72, 304-311.	4.2	55
34	The importance of slope aspect and stand age on the photosynthetic carbon fixation capacity of forest: a case study with black locust (Robinia pseudoacacia) plantations on the Loess Plateau. Acta Physiologiae Plantarum, 2011, 33, 419-429.	2.1	23
35	Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO ₂ atmosphere. Global Change Biology, 2009, 15, 38-47.	9.5	66
36	Ectomycorrhizal fungus (Paxillus involutus) and hydrogels affect performance of Populus euphratica exposed to drought stress. Annals of Forest Science, 2009, 66, 106-106.	2.0	52

Zhi-Bin Luo

#	Article	IF	CITATIONS
37	Upgrading Root Physiology for Stress Tolerance by Ectomycorrhizas: Insights from Metabolite and Transcriptional Profiling into Reprogramming for Stress Anticipation. Plant Physiology, 2009, 151, 1902-1917.	4.8	186
38	Carbon-based secondary metabolites and internal nitrogen pools in Populus nigra under Free Air CO2 Enrichment (FACE) and nitrogen fertilisation. Plant and Soil, 2008, 304, 45-57.	3.7	66
39	Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2 (EUROFACE) and N fertilization. Global Change Biology, 2006, 12, 272-283.	9.5	41
40	Influence of free air CO2 enrichment (EUROFACE) and nitrogen fertilisation on the anatomy of juvenile wood of three poplar species after coppicing. Trees - Structure and Function, 2005, 19, 109-118.	1.9	68
41	Identification and Functional Prediction of Poplar Root circRNAs Involved in Treatment With Different Forms of Nitrogen. Frontiers in Plant Science, 0, 13, .	3.6	2