Jianlu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2580695/publications.pdf

Version: 2024-02-01

92	5,805	43	73
papers	citations	h-index	g-index
93	93	93	5769
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-performance ReS ₂ photodetectors enhanced by a ferroelectric field and strain field. RSC Advances, 2022, 12, 4939-4945.	1.7	8
2	Exciton Emissions in Bilayer WSe ₂ Tuned by the Ferroelectric Polymer. Journal of Physical Chemistry Letters, 2022, 13, 1636-1643.	2.1	3
3	Ultralowâ€Power Machine Vision with Selfâ€Powered Sensor Reservoir. Advanced Science, 2022, 9, e2106092.	5.6	68
4	Epitaxial growth and phase evolution of ferroelectric La-doped HfO2 films. Applied Physics Letters, 2022, 120, .	1.5	7
5	HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Science Advances, 2022, 8, eabn1811.	4.7	50
6	Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains. Nature Communications, 2022, 13 , .	5.8	77
7	Gate Stack Engineering in MoS ₂ Fieldâ€Effect Transistor for Reduced Channel Doping and Hysteresis Effect. Advanced Electronic Materials, 2021, 7, 2000395.	2.6	19
8	Direct Polarimetric Image Sensor and Wide Spectral Response Based on Quasiâ€1D Sb ₂ S ₃ Nanowire. Advanced Functional Materials, 2021, 31, 2006601.	7.8	52
9	End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & End-Bonded Conta	4.0	12
10	Bio-Separated and Gate-Free 2D MoS2 Biosensor Array for Ultrasensitive Detection of BRCA1. Nanomaterials, 2021, 11, 545.	1.9	7
11	Ferroelectric Synaptic Transistor Network for Associative Memory. Advanced Electronic Materials, 2021, 7, 2001276.	2.6	52
12	Gateâ€Tunable Photodiodes Based on Mixedâ€Dimensional Te/MoTe ₂ Van der Waals Heterojunctions. Advanced Electronic Materials, 2021, 7, 2001066.	2.6	29
13	Interface engineering of ferroelectric-gated MoS2 phototransistor. Science China Information Sciences, $2021,64,1$.	2.7	10
14	Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Science Advances, 2021, 7, .	4.7	121
15	Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Advanced Science, 2021, 8, e2100569.	5.6	118
16	Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics, 2021, 4, 357-363.	13.1	292
17	Logic gates based on neuristors made from two-dimensional materials. Nature Electronics, 2021, 4, 399-404.	13.1	95
18	Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nature Communications, 2021, 12, 4030.	5.8	79

#	Article	IF	CITATIONS
19	Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nature Nanotechnology, 2021, 16, 874-881.	15.6	130
20	High Performance Ternary Organic Phototransistors with Photoresponse up to 2600 nm at Room Temperature. Advanced Functional Materials, 2021, 31, 2103787.	7.8	26
21	High-Performance Photodetectors with an Ultrahigh Photoswitching Ratio and a Very Fast Response Speed in Self-Powered Cu ₂ ZnSnS ₄ /CdS PN Heterojunctions. ACS Applied Electronic Materials, 2021, 3, 4135-4143.	2.0	10
22	Polarizer-free polarimetric image sensor through anisotropic two-dimensional GeSe. Science China Materials, 2021, 64, 1230-1237.	3.5	21
23	Visualizing Band Profiles of Gate-Tunable Junctions in MoS ₂ /WSe ₂ Heterostructure Transistors. ACS Nano, 2021, 15, 16314-16321.	7.3	14
24	Strain-engineered room temperature cavity polariton in ZnO whispering gallery microcavity. Applied Physics Letters, 2020, 116 , .	1.5	6
25	Ultrasensitive negative capacitance phototransistors. Nature Communications, 2020, 11, 101.	5 . 8	124
26	Ferroelectricity and antiferromagnetism in organic–inorganic hybrid (1,4-bis(imidazol-1-ylmethyl)benzene)CuCl ₄ ŷH ₂ O. CrystEngComm, 2020, 22, 587-592.	1.3	9
27	A Dualâ€Gate MoS ₂ Photodetector Based on Interface Coupling Effect. Small, 2020, 16, e1904369.	5.2	65
28	Nanometer-Thick Metastable Zinc Blende \hat{I}^3 -MnTe Single-Crystalline Films for High-Performance Ultraviolet and Broadband Photodetectors. ACS Applied Nano Materials, 2020, 3, 12046-12054.	2.4	8
29	Ferroelectric tunnel junctions with high tunnelling electroresistance. Nature Electronics, 2020, 3, 440-441.	13.1	18
30	Highly Sensitive InSb Nanosheets Infrared Photodetector Passivated by Ferroelectric Polymer. Advanced Functional Materials, 2020, 30, 2006156.	7.8	41
31	A versatile photodetector assisted by photovoltaic and bolometric effects. Light: Science and Applications, 2020, 9, 160.	7.7	56
32	Ultrabroadband Photodetectors up to 10.6 µm Based on 2D Fe ₃ O ₄ Nanosheets. Advanced Materials, 2020, 32, e2002237.	11.1	57
33	Stable Hysteresis-Free MoS ₂ Transistors With Low-k/High-k Bilayer Gate Dielectrics. IEEE Electron Device Letters, 2020, 41, 1036-1039.	2.2	10
34	Ferroelectric field-effect transistors for logic and <i>in-situ</i> memory applications. Nanotechnology, 2020, 31, 424007.	1.3	9
35	Highâ€Performance Broadband Tungsten Disulfide Photodetector Decorated with Indium Arsenide Nanoislands. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000297.	0.8	2
36	MoTe ₂ p–n Homojunctions Defined by Ferroelectric Polarization. Advanced Materials, 2020, 32, e1907937.	11.1	115

#	Article	IF	CITATIONS
37	Two-dimensional series connected photovoltaic cells defined by ferroelectric domains. Applied Physics Letters, 2020, 116, .	1.5	10
38	Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nature Electronics, 2020, 3, 43-50.	13.1	167
39	Extremely Low Dark Current MoS ₂ Photodetector via 2D Halide Perovskite as the Electron Reservoir. Advanced Optical Materials, 2020, 8, 1901402.	3.6	55
40	Multifunctional MoS ₂ Transistors with Electrolyte Gel Gating. Small, 2020, 16, e2000420.	5.2	23
41	Correlation of oxygen vacancy and Jahn–Teller polarons in epitaxial perovskite SrMnO3 ultrathin films: Dielectric spectroscopy investigations. Applied Physics Letters, 2020, 116, .	1.5	5
42	Ferroelectric Enhanced Performance of a GeSn/Ge Dual-Nanowire Photodetector. Nano Letters, 2020, 20, 3872-3879.	4.5	33
43	Ultrabroad-Spectrum Photodetectors: Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 µm (Adv. Sci. 15/2019). Advanced Science, 2019, 6, 1970089.	5.6	2
44	Efficient two-terminal artificial synapse based on a network of functionalized conducting polymer nanowires. Journal of Materials Chemistry C, 2019, 7, 9933-9938.	2.7	32
45	Ferroelectric properties of gradient doped Y2O3:HfO2 thin films grown by pulsed laser deposition. Applied Physics Letters, 2019, 115, .	1.5	9
46	MoS ₂ /HfO ₂ /Siliconâ€Onâ€Insulator Dualâ€Photogating Transistor with Ambipolar Photoresponsivity for Highâ€Resolution Light Wavelength Detection. Advanced Functional Materials, 2019, 29, 1906242.	7.8	22
47	A study on ionic gated MoS2 phototransistors. Science China Information Sciences, 2019, 62, 1.	2.7	8
48	Reliable Nonvolatile Memory Black Phosphorus Ferroelectric Field-Effect Transistors with van der Waals Buffer. ACS Applied Materials & Interfaces, 2019, 11, 42358-42364.	4.0	8
49	Multimode Signal Processor Unit Based on the Ambipolar WSe ₂ –Cr Schottky Junction. ACS Applied Materials & Interfaces, 2019, 11, 38895-38901.	4.0	3
50	AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity. Advanced Functional Materials, 2019, 29, 1900314.	7.8	121
51	Symmetric Ultrafast Writing and Erasing Speeds in Quasiâ€Nonvolatile Memory via van der Waals Heterostructures. Advanced Materials, 2019, 31, e1808035.	11.1	50
52	Amorphous Gallium Oxideâ€Based Gateâ€Tunable Highâ€Performance Thin Film Phototransistor for Solarâ€Blind Imaging. Advanced Electronic Materials, 2019, 5, 1900389.	2.6	95
53	Ultrasensitive Hybrid MoS ₂ –ZnCdSe Quantum Dot Photodetectors with High Gain. ACS Applied Materials & Dot Photodetectors with High Gain. ACS Appl	4.0	62
54	Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 Âμm. Advanced Science, 2019, 6, 1901050.	5.6	52

#	Article	IF	CITATIONS
55	Memory Devices: Symmetric Ultrafast Writing and Erasing Speeds in Quasiâ€Nonvolatile Memory via van der Waals Heterostructures (Adv. Mater. 11/2019). Advanced Materials, 2019, 31, 1970081.	11.1	O
56	Characterization of atomic defects on the photoluminescence in twoâ€dimensional materials using transmission electron microscope. InformaÄnÃ-Materiály, 2019, 1, 85-97.	8.5	46
57	Ultrahighâ€Detectivity Photodetectors with Van der Waals Epitaxial CdTe Singleâ€Crystalline Films. Small, 2019, 15, e1900236.	5.2	27
58	Ultrasensitive Mid-wavelength Infrared Photodetection Based on a Single InAs Nanowire. ACS Nano, 2019, 13, 3492-3499.	7.3	45
59	A Robust Artificial Synapse Based on Organic Ferroelectric Polymer. Advanced Electronic Materials, 2019, 5, 1800600.	2.6	129
60	Ferroelectric Synapses: A Robust Artificial Synapse Based on Organic Ferroelectric Polymer (Adv.) Tj ETQq0 0 0 rg	3T_lOverloc	ાંકુ 10 Tf 50
61	Controlled Doping of Waferâ€6cale PtSe ₂ Films for Device Application. Advanced Functional Materials, 2019, 29, 1805614.	7.8	87
62	Optoelectronics: Highâ€Performance Photovoltaic Detector Based on MoTe ₂ /MoS ₂ Van der Waals Heterostructure (Small 9/2018). Small, 2018, 14, 1870038.	5.2	7
63	Highâ€Performance Photovoltaic Detector Based on MoTe ₂ /MoS ₂ Van der Waals Heterostructure. Small, 2018, 14, 1703293.	5.2	205
64	Ferroelectric Localized Field–Enhanced ZnO Nanosheet Ultraviolet Photodetector with High Sensitivity and Low Dark Current. Small, 2018, 14, e1800492.	5.2	85
65	Field Effect Transistors: Ferroelectric Negative Capacitance Field Effect Transistor (Adv. Electron.) Tj ETQq1 1 0.78	4314 rgBT 2.6	 LOverlock
66	Perpendicular Optical Reversal of the Linear Dichroism and Polarized Photodetection in 2D GeAs. ACS Nano, 2018, 12, 12416-12423.	7.3	157
67	High-performance lead-free two-dimensional perovskite photo transistors assisted by ferroelectric dielectrics. Journal of Materials Chemistry C, 2018, 6, 12714-12720.	2.7	39
68	Mechanism of Electric Power Generation from Ionic Droplet Motion on Polymer Supported Graphene. Journal of the American Chemical Society, 2018, 140, 13746-13752.	6.6	87
69	Highâ€Performance Waferâ€6cale MoS ₂ Transistors toward Practical Application. Small, 2018, 14, e1803465.	5.2	88
70	Complementary Logic with Voltage Zeroâ€Loss and Nanoâ€Watt Power via Configurable MoS ₂ /WSe ₂ Gate. Advanced Functional Materials, 2018, 28, 1805171.	7.8	32
71	Spatial and Frequency Selective Plasmonic Metasurface for Long Wavelength Infrared Spectral Region. Advanced Optical Materials, 2018, 6, 1800337.	3.6	23
72	Ferroelectric Negative Capacitance Field Effect Transistor. Advanced Electronic Materials, 2018, 4, 1800231.	2.6	105

#	Article	IF	Citations
7 3	High performance top-gated ferroelectric field effect transistors based on two-dimensional ZnO nanosheets. Applied Physics Letters, 2017, 110, .	1.5	34
74	Arrayed Van Der Waals Broadband Detectors for Dualâ€Band Detection. Advanced Materials, 2017, 29, 1604439.	11.1	218
75	Eliminating Overerase Behavior by Designing Energy Band in High-Speed Charge-Trap Memory Based on WSe ₂ . Small, 2017, 13, 1604128.	5.2	39
76	Charge-Trap Memory: Eliminating Overerase Behavior by Designing Energy Band in High-Speed Charge-Trap Memory Based on WSe2 (Small 17/2017). Small, 2017, 13, .	5.2	0
77	Recent Progress on Localized Field Enhanced Twoâ€dimensional Material Photodetectors from Ultravioletâ€"Visible to Infrared. Small, 2017, 13, 1700894.	5.2	234
78	Preparation of La0.67Ca0.23Sr0.1MnO3 thin films with interesting electrical and magnetic properties via pulsed-laser deposition. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	3
79	Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating. Npj 2D Materials and Applications, 2017, 1 , .	3.9	77
80	Electrical characterization of MoS2 field-effect transistors with different dielectric polymer gate. AIP Advances, $2017, 7, .$	0.6	15
81	Highâ€Sensitivity Floatingâ€Gate Phototransistors Based on WS ₂ and MoS ₂ . Advanced Functional Materials, 2016, 26, 6084-6090.	7.8	124
82	Ferroelectric polymer tuned two dimensional layered MoTe ₂ photodetector. RSC Advances, 2016, 6, 87416-87421.	1.7	51
83	Visible to short wavelength infrared In ₂ Se ₃ -nanoflake photodetector gated by a ferroelectric polymer. Nanotechnology, 2016, 27, 364002.	1.3	63
84	Highâ€Performance Ferroelectric Polymer Sideâ€Gated CdS Nanowire Ultraviolet Photodetectors. Advanced Functional Materials, 2016, 26, 7690-7696.	7.8	107
85	Optoelectronic Properties of Few-Layer MoS ₂ FET Gated by Ferroelectric Relaxor Polymer. ACS Applied Materials & Diterfaces, 2016, 8, 32083-32088.	4.0	76
86	Flexible graphene field effect transistor with ferroelectric polymer gate. Optical and Quantum Electronics, 2016, 48, 1.	1.5	21
87	When Nanowires Meet Ultrahigh Ferroelectric Field–High-Performance Full-Depleted Nanowire Photodetectors. Nano Letters, 2016, 16, 2548-2555.	4.5	135
88	Photodetectors: Ultrasensitive and Broadband MoS ₂ Photodetector Driven by Ferroelectrics (Adv. Mater. 42/2015). Advanced Materials, 2015, 27, 6538-6538.	11.1	8
89	Ultrasensitive and Broadband MoS ₂ Photodetector Driven by Ferroelectrics. Advanced Materials, 2015, 27, 6575-6581.	11.1	722
90	Integration of Highâ€ <i>k</i> Oxide on MoS ₂ by Using Ozone Pretreatment for Highâ€Performance MoS ₂ Topâ€Gated Transistor with Thicknessâ€Dependent Carrier Scattering Investigation. Small, 2015, 11, 5932-5938.	5.2	74

#	Article	IF	CITATIONS
91	Ferroelectric control of magnetism in P(VDF–TrFE)/Co heterostructure. Journal of Materials Science: Materials in Electronics, 2015, 26, 7502-7506.	1.1	9
92	Synthetically controlling the optoelectronic properties of dithieno[2,3-d: $2\hat{a}\in^2$, $3\hat{a}\in^2$ -d $a\in^2$]benzo[1,2-b:4,5-b $a\in^2$]dithiophene-alt-diketopyrrolopyrrole-conjugated polymers efficient solar cells. Journal of Materials Chemistry A, 2014, 2, 15316-15325.	foi5.2	46