Peng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/258062/publications.pdf

Version: 2024-02-01

	933447	1281871
324	10	11
citations	h-index	g-index
		0.00
11	11	383
docs citations	times ranked	citing authors
	citations 11	324 10 citations h-index 11 11

#	Article	IF	CITATIONS
1	Auxin promotes fiber elongation by enhancing gibberellic acid biosynthesis in cotton. Plant Biotechnology Journal, 2022, 20, 423-425.	8.3	19
2	GhARF16â€1 modulates leaf development by transcriptionally regulating the <i>GhKNOX2â€1 </i> gene in cotton. Plant Biotechnology Journal, 2021, 19, 548-562.	8.3	15
3	Origin of a Subgenome and Genome Evolution ofÂAllotetraploid Cotton Species. Molecular Plant, 2020, 13, 1238-1240.	8.3	11
4	GhYGL1d, a pentatricopeptide repeat protein, is required for chloroplast development in cotton. BMC Plant Biology, 2019, 19, 350.	3.6	10
5	Comprehensive analysis of WOX genes uncovers that WOX13 is involved in phytohormone-mediated fiber development in cotton. BMC Plant Biology, 2019, 19, 312.	3.6	28
6	Comprehensive analyses of ZFP gene family and characterization of expression profiles during plant hormone response in cotton. BMC Plant Biology, 2019, 19, 329.	3.6	12
7	Auxinâ€mediated statolith production for root gravitropism. New Phytologist, 2019, 224, 761-774.	7.3	55
8	Two pivotal <scp>RNA</scp> editing sites in the mitochondrial <i>atp1</i> <scp>mRNA</scp> are required for <scp>ATP</scp> synthase to produce sufficient <scp>ATP</scp> for cotton fiber cell elongation. New Phytologist, 2018, 218, 167-182.	7.3	36
9	Genome-wide identification of the GhARF gene family reveals that GhARF2 and GhARF18 are involved in cotton fibre cell initiation. Journal of Experimental Botany, 2018, 69, 4323-4337.	4.8	43
10	The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses. BMC Genomics, 2017, 18, 507.	2.8	46
11	Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis. BMC Plant Biology, 2016, 16, 257.	3.6	49