Giorgio Grani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2580456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Diagnosis and Management of Thyroid Nodules. JAMA - Journal of the American Medical Association, 2018, 319, 914.	3.8	447
2	Reducing the Number of Unnecessary Thyroid Biopsies While Improving Diagnostic Accuracy: Toward the "Right―TIRADS. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 95-102.	1.8	220
3	Interobserver agreement of various thyroid imaging reporting and data systems. Endocrine Connections, 2018, 7, 1-7.	0.8	162
4	Follicular thyroid cancer and Hürthle cell carcinoma: challenges in diagnosis, treatment, and clinical management. Lancet Diabetes and Endocrinology,the, 2018, 6, 500-514.	5.5	134
5	Contemporary Thyroid Nodule Evaluation and Management. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2869-2883.	1.8	134
6	Thyroglobulin in Lymph Node Fine-Needle Aspiration Washout: A Systematic Review and Meta-analysis of Diagnostic Accuracy. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1970-1982.	1.8	121
7	8th edition of the AJCC/TNM staging system of thyroid cancer: what to expect (ITCO#2). Endocrine-Related Cancer, 2018, 25, L7-L11.	1.6	103
8	Ultrasonography scoring systems can rule out malignancy in cytologically indeterminate thyroid nodules. Endocrine, 2017, 57, 256-261.	1.1	90
9	Follow-up of differentiated thyroid cancer – what should (and what should not) be done. Nature Reviews Endocrinology, 2018, 14, 538-551.	4.3	85
10	Real-world efficacy and safety of lenvatinib: data from a compassionate use in the treatment of radioactive iodine-refractory differentiated thyroid cancer patients in Italy. European Journal of Cancer, 2019, 118, 35-40.	1.3	70
11	MicroRNA-based molecular classification of papillary thyroid carcinoma. International Journal of Oncology, 2017, 50, 1767-1777.	1.4	67
12	Identification of Thyroid-Associated Serum microRNA Profiles and Their Potential Use in Thyroid Cancer Follow-Up. Journal of the Endocrine Society, 2017, 1, 3-13.	0.1	55
13	Prospective Evaluation of Semiquantitative Strain Ratio and Quantitative 2D Ultrasound Shear Wave Elastography (SWE) in Association with TIRADS Classification for Thyroid Nodule Characterization. Ultraschall in Der Medizin, 2019, 40, 495-503.	0.8	55
14	Can ultrasound systems for risk stratification of thyroid nodules identify follicular carcinoma?. Cancer Cytopathology, 2020, 128, 250-259.	1.4	55
15	Risk Stratification of Neck Lesions Detected Sonographically During the Follow-Up of Differentiated Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3036-3044.	1.8	54
16	The ultrasound risk stratification systems for thyroid nodule have been evaluated against papillary carcinoma. A meta-analysis. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 453-460.	2.6	53
17	Are Evidence-Based Guidelines Reflected in Clinical Practice? An Analysis of Prospectively Collected Data of the Italian Thyroid Cancer Observatory. Thyroid, 2017, 27, 1490-1497.	2.4	52
18	Thyroid hormone therapy in differentiated thyroid cancer. Endocrine, 2019, 66, 43-50.	1.1	52

#	Article	IF	CITATIONS
19	Thyroid Cancer Patients With No Evidence of Disease: The Need for Repeat Neck Ultrasound. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4981-4989.	1.8	50
20	Screening for differentiated thyroid cancer in selected populations. Lancet Diabetes and Endocrinology,the, 2020, 8, 81-88.	5.5	50
21	Thyroid Function in Infertile Patients Undergoing Assisted Reproduction. American Journal of Reproductive Immunology, 2013, 70, 336-341.	1.2	48
22	Performance of contrast-enhanced ultrasound (CEUS) in assessing thyroid nodules: a systematic review and meta-analysis using histological standard of reference. Radiologia Medica, 2020, 125, 406-415.	4.7	48
23	Intrinsic factors affecting adequacy of thyroid nodule fineâ€needle aspiration cytology. Clinical Endocrinology, 2013, 78, 141-144.	1.2	47
24	Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing?. Cancers, 2022, 14, 3357.	1.7	43
25	Medical Treatment of Hyperthyroidism: State of the Art. Experimental and Clinical Endocrinology and Diabetes, 2010, 118, 678-684.	0.6	42
26	Recent advances in managing differentiated thyroid cancer. F1000Research, 2018, 7, 86.	0.8	41
27	Grey-Scale Analysis Improves the Ultrasonographic Evaluation of Thyroid Nodules. Medicine (United) Tj ETQq1	1 0.784314 0.4	↓rgBT /Over¦o
28	Real-World Performance of the American Thyroid Association Risk Estimates in Predicting 1-Year Differentiated Thyroid Cancer Outcomes: A Prospective Multicenter Study of 2000 Patients. Thyroid, 2021, 31, 264-271.	2.4	40
29	Thyroid Nodule Characterization: How to Assess the Malignancy Risk. Update of the Literature. Diagnostics, 2021, 11, 1374.	1.3	39
30	Molecular defects in thyroid dysgenesis. Clinical Genetics, 2020, 97, 222-231.	1.0	37
31	Is thyroid nodule location associated with malignancy risk?. Ultrasonography, 2019, 38, 231-235.	1.0	37
32	Lack of association between obesity and aggressiveness of differentiated thyroid cancer. Journal of Endocrinological Investigation, 2019, 42, 85-90.	1.8	36
33	Cancer Care During COVID-19 Era: The Quality of Life of Patients With Thyroid Malignancies. Frontiers in Oncology, 2020, 10, 1128.	1.3	34
34	A comprehensive score to diagnose Hashimoto's thyroiditis: a proposal. Endocrine, 2015, 49, 361-365.	1.1	32
35	Performance of EU-TIRADS in malignancy risk stratification of thyroid nodules: a meta-analysis. European Journal of Endocrinology, 2020, 183, 255-264.	1.9	32
36	Lowâ€risk papillary thyroid microcarcinoma: Optimal management toward a more conservative approach. Journal of Surgical Oncology, 2020, 121, 958-963.	0.8	30

#	Article	IF	CITATIONS
37	Safety and Quality-of-Life Data from an Italian Expanded Access Program of Lenvatinib for Treatment of Thyroid Cancer. Thyroid, 2021, 31, 224-232.	2.4	30
38	Association of Thyroid Diseases with Primary Extra-Thyroidal Malignancies in Women: Results of a Cross-Sectional Study of 6,386 Patients. PLoS ONE, 2015, 10, e0122958.	1.1	29
39	Thyroid autoimmunity and risk of malignancy in thyroid nodules submitted to fineâ€needle aspiration cytology. Head and Neck, 2015, 37, 260-264.	0.9	28
40	TIRADS, SRE and SWE in INDETERMINATE thyroid nodule characterization: Which has better diagnostic performance?. Radiologia Medica, 2021, 126, 1189-1200.	4.7	28
41	Sonographically Estimated Risks of Malignancy for Thyroid Nodules Computed with Five Standard Classification Systems: Changes over Time and Their Relation to Malignancy. Thyroid, 2018, 28, 1190-1197.	2.4	27
42	Performance of a dual-component molecular assay in cytologically indeterminate thyroid nodules. Endocrine, 2020, 68, 458-465.	1.1	27
43	Diagnostic Performance of Neck Ultrasonography in the Preoperative Evaluation for Extrathyroidal Extension of Suspicious Thyroid Nodules. World Journal of Surgery, 2020, 44, 2669-2674.	0.8	26
44	Multimodal Feature Fusion and Knowledge-Driven Learning via Experts Consult for Thyroid Nodule Classification. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 2527-2534.	5.6	26
45	Taller-Than-Wide Shape: A New Definition Improves the Specificity of TIRADS Systems. European Thyroid Journal, 2020, 9, 85-91.	1.2	25
46	Nodular Thyroid Disease in the Era of Precision Medicine. Frontiers in Endocrinology, 2019, 10, 907.	1.5	25
47	Thyroid nodule recurrence following lobo-isthmectomy: incidence, patient's characteristics, and risk factors. Journal of Endocrinological Investigation, 2018, 41, 1469-1475.	1.8	23
48	Computer-aided diagnostic system for thyroid nodule sonographic evaluation outperforms the specificity of less experienced examiners. Journal of Ultrasound, 2020, 23, 169-174.	0.7	23
49	Endocrine surgery during COVID-19 pandemic: do we need an update of indications in Italy?. Endocrine, 2020, 68, 485-488.	1.1	22
50	Interpretation of serum calcitonin in patients with chronic autoimmune thyroiditis. Endocrine-Related Cancer, 2012, 19, 345-349.	1.6	20
51	A synonymous RET substitution enhances the oncogenic effect of an in-cis missense mutation by increasing constitutive splicing efficiency. PLoS Genetics, 2018, 14, e1007678.	1.5	20
52	Is it Worth Suppressing Tsh in low- and Intermediate-Risk Papillary Thyroid Cancer Patients Before the First Disease Assessment?. Endocrine Practice, 2019, 25, 165-401.	1.1	18
53	US-Elastography With Different Techniques for Thyroid Nodule Characterization: Systematic Review and Meta-analysis. Frontiers in Oncology, 2022, 12, 845549.	1.3	16
54	Sonographic Presentation of Metastases to the Thyroid Gland: A Case Series. Journal of the Endocrine Society, 2018, 2, 855-859.	0.1	15

#	Article	IF	CITATIONS
55	Does the Site of Origin of the Microcarcinoma with Respect to the Thyroid Surface Matter? A Multicenter Pathologic and Clinical Study for Risk Stratification. Cancers, 2020, 12, 246.	1.7	15
56	Minimal Extrathyroidal Extension in Predicting 1-Year Outcomes: A Longitudinal Multicenter Study of Low-to-Intermediate-Risk Papillary Thyroid Carcinoma (ITCO#4). Thyroid, 2021, 31, 1814-1821.	2.4	15
57	Risk of Kidney Dysfunction IN Nafld. Current Pharmaceutical Design, 2020, 26, 1045-1061.	0.9	12
58	Therapy of Hyperthyroidism in Pregnancy and Breastfeeding. Obstetrical and Gynecological Survey, 2011, 66, 378-385.	0.2	11
59	Loss of Function SETD2 Mutations in Poorly Differentiated Metastases from Two Hürthle Cell Carcinomas of the Thyroid. Cancers, 2020, 12, 1892.	1.7	11
60	Analytical validation of a novel targeted next-generation sequencing assay for mutation detection in thyroid nodule aspirates and tissue. Endocrine, 2020, 69, 451-455.	1.1	10
61	Selective Use of Radioactive Iodine Therapy for Papillary Thyroid Cancers With Low or Lower-Intermediate Recurrence Risk. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1717-1727.	1.8	10
62	Medullary Thyroid Carcinoma and Tuberous Sclerosis. Endocrine Pathology, 2009, 20, 141-144.	5.2	9
63	Temporal Changes in Thyroid Nodule Volume: Lack of Effect on Paranodular Thyroid Tissue Volume. Thyroid, 2017, 27, 1378-1384.	2.4	9
64	Severe hypoglycemia in patients with known diabetes requiring emergency department care: A report from an Italian multicenter study. Journal of Clinical and Translational Endocrinology, 2016, 5, 46-52.	1.0	8
65	Artificial Intelligence: What Is It and How Can It Expand theÂUltrasound Potential in the Future?. Ultraschall in Der Medizin, 2020, 41, 356-360.	0.8	8
66	Sonographic Risk Stratification Systems for Thyroid Nodules as Rule-Out Tests in Older Adults. Cancers, 2020, 12, 2458.	1.7	8
67	Molecular analysis of fine-needle aspiration cytology in thyroid disease: where are we?. Current Opinion in Otolaryngology and Head and Neck Surgery, 2021, 29, 107-112.	0.8	7
68	Indeterminate thyroid nodules (<scp>TIR</scp> 3A/ <scp>TIR</scp> 3B) according to the new Italian reporting system for thyroid cytology: A cytomorphological study. Cytopathology, 2019, 30, 475-484.	0.4	6
69	Preoperative Ultrasonography in the Evaluation of Suspected Familial Non-Medullary Thyroid Cancer: Are We Able to Predict Multifocality and Extrathyroidal Extension?. Journal of Clinical Medicine, 2021, 10, 5277.	1.0	6
70	Establishment and maintenance of thyroid organoids from human cancer cells. STAR Protocols, 2022, 3, 101393.	0.5	6
71	The COVID-19 outbreak and de-escalation of thyroid cancer diagnosis and treatment. Endocrine, 2022, 78, 387-391.	1.1	6
72	Total thyroidectomy for Graves' disease treatment. Clinica Terapeutica, 2013, 164, 193-6.	0.2	5

#	Article	IF	CITATIONS
73	Diagnostic Accuracy of rhTSH Test with Neck Ultrasonography in Differentiated Thyroid Cancer Follow-up. Experimental and Clinical Endocrinology and Diabetes, 2010, 118, 554-556.	0.6	4
74	Thyroid Dysfunction and Nonalcoholic Fatty Liver Disease: We Need New Larger and Well-Designed Longitudinal Studies. Digestive Diseases and Sciences, 2018, 63, 1970-1976.	1.1	4
75	Changes in TSH levels in athyreotic patients with differentiated thyroid cancer during levothyroxine therapy: influence on dose adjustments. Journal of Endocrinological Investigation, 2019, 42, 1485-1490.	1.8	3
76	Exploring the molecular insights of concurrent composite mucoepidermoid carcinoma and papillary thyroid carcinoma. Endocrine, 2020, 68, 230-232.	1.1	3
77	Fournier's gangrene during lenvatinib treatment: A case report. Molecular and Clinical Oncology, 2020, 12, 588-591.	0.4	3
78	Diagnostic accuracy of ultrasonographic features in detecting thyroid cancer in the transition age: a meta-analysis. European Thyroid Journal, 2022, 11, .	1.2	3
79	Influence of Thyrotropin and Thyroid Volume on Basal Serum Calcitonin. Experimental and Clinical Endocrinology and Diabetes, 2015, 123, 44-47.	0.6	2
80	Prognosis of patients with differentiated thyroid carcinomas having a preoperative cytological report of indeterminate at low or high risk. A multicenter study. Endocrine, 2019, 66, 557-562.	1.1	2
81	Levothyroxine Treatment Increases Mortality in Patients with Heart Failure. Clinical Thyroidology, 2019, 31, 95-98.	0.0	2
82	Clinically Silent Thyroid Cancers: Drop Those Needles and Scalpels!. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e889-e890.	1.8	2
83	A Network-Based Analysis of Disease Modules From a Taxonomic Perspective. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1773-1781.	3.9	2
84	Non-Marked Hypoechogenic Nodules: Multicenter Study on the Thyroid Malignancy Risk Stratification and Accuracy Based on TIRADS Systems Comparison. Medicina (Lithuania), 2022, 58, 257.	0.8	2
85	Sonographically Estimated Thyroid Nodule Malignancy Risk: Strengths and Limitations in Clinical Practice. Endocrine Practice, 2019, 25, 966-967.	1.1	1
86	Comment on: BRAF mutation analysis by ARMSâ€₽CR refines thyroid nodule management. Clinical Endocrinology, 2020, 92, 482-483.	1.2	1
87	Supporting Personalized Health Care With Social Media Analytics: An Application to Hypothyroidism. ACM Transactions on Computing for Healthcare, 2022, 3, 1-28.	3.3	1
88	Inappropriate Use of Thyroid Ultrasound Is Common in Clinical Practice. Clinical Thyroidology, 2022, 34, 23-25.	0.0	1
89	ls Lenvatinib Better Than Sorafenib as First-Line Treatment of Radioiodine Refractory Differentiated Thyroid Cancers?. Clinical Thyroidology, 2022, 34, 312-314.	0.0	1
90	Prediction of response to vemurafenib in BRAF V600E mutant cancers based on a network approach. Annals of Oncology, 2018, 29, viii667-viii668.	0.6	0

#	ARTICLE	IF	CITATIONS
91	Estimating risk of recurrence of differentiated thyroid cancer patients: a real-world multicenter validation of the american thyroid association initial risk stratification and dynamic re-assessment after 5 years of follow-up Endocrine Abstracts, 0, , .	0.0	0
92	Role of miR-139–5p in radioiodine-refractory thyroid cancers. Endocrine Abstracts, 0, , .	0.0	0
93	Thyroglobulin in fine-needle aspiration wash-out diagnostic performance: a meta-analysis. Endocrine Abstracts, 0, , .	0.0	0
94	Serum calcitonin, thyrotropin, and goiter. Endocrine Abstracts, 0, , .	0.0	0
95	SUN-420 Spontaneous Changes in TSH Levels After Thyroidectomy During Long-Term Follow-Up. Journal of the Endocrine Society, 2020, 4, .	0.1	0
96	The emotional outbreak of (endocrine) cancer patients during COVID-19 pandemic. Endocrine Abstracts, 0, , .	0.0	0
97	Performance of a dual-component molecular assay in cytologically indeterminate thyroid nodules. Endocrine Abstracts, 0, , .	0.0	0
98	A Young Patient with Intrathyroidal Papillary Thyroid Cancer and Family History of Differentiated Thyroid Cancer. , 2021, , 13-17.		0
99	Tumor Related- and Non-tumor-Related Diarrhea in a Medullary Thyroid Cancer Patient. , 2021, , 319-325.		0
100	OR21-07 The 2015 American Thyroid Association Risk Stratification System Is a Predictor of Persistent Disease in Real-World Clinical Practice. Journal of the Endocrine Society, 2020, 4, .	0.1	0
101	Integrating categorical and structural proximity in Disease Ontologies. , 2021, 2021, 2011-2014.		0
102	Therapy of non-iodine uptaking metastasis in thyroid cancer. , 2022, , .		0
103	¹⁸ F–FDG–PET/CT May Reduce Unnecessary Thyroid Surgery in Cytologically Indeterminate Thyroid Nodules. Clinical Thyroidology, 2022, 34, 116-118.	0.0	0
104	Management of cytologically indeterminate thyroid nodules: <i>primum non nocere</i> . Polish Archives of Internal Medicine, 2021, 131, .	0.3	0
105	Levothyroxine Treatment of Subclinical Hypothyroidism in the Elderly Does Not Improve Hemoglobin Levels. Clinical Thyroidology, 2022, 34, 199-201.	0.0	0