
## Alexander Galushko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2580291/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Thermophilic aerobic organoheterotrophic soil bacteria from anthropogenically changed territories of Saint Petersburg and Leningrad region. Ecological Genetics, 2021, 19, 47-58.                                                     | 0.5  | 0         |
| 2  | Moderate thermophilic chemoorganoheterotrophic bacterium in surface layer of anthropogenic grounds of industrial estate area of Al-Mafraq, Jordan. Ecological Genetics, 2021, 19, 209-217.                                            | 0.5  | 0         |
| 3  | Fundamentals of Physical Modeling of "Ideal―Agroecosystems. Technical Physics, 2020, 65, 1563-1569.                                                                                                                                   | 0.7  | 12        |
| 4  | Synthesis and Research of Functional Layers Based on Titanium Dioxide Nanoparticles and Silica Sols<br>Formed on the Surface of Seeds of Chinese Cabbage. Russian Journal of Applied Chemistry, 2020, 93,<br>25-34.                   | 0.5  | 6         |
| 5  | Sol-gel preparation of protective and decorative coatings on wood. Journal of Sol-Gel Science and Technology, 2019, 92, 474-483.                                                                                                      | 2.4  | 17        |
| 6  | Fabrication of composite electrodes based on cobalt (II) hydroxide for microbiological fuel cells.<br>Journal of Sol-Gel Science and Technology, 2019, 92, 506-514.                                                                   | 2.4  | 4         |
| 7  | Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through<br>Horizontal Gene Transfer. PLoS ONE, 2015, 10, e0125888.                                                                                    | 2.5  | 5         |
| 8  | Cyanate as an energy source for nitrifiers. Nature, 2015, 524, 105-108.                                                                                                                                                               | 27.8 | 231       |
| 9  | The Family Desulfomicrobiaceae. , 2014, , 97-102.                                                                                                                                                                                     |      | 10        |
| 10 | Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science, 2014, 345, 1052-1054.                                                                                                                                    | 12.6 | 166       |
| 11 | Desulfoconvexum algidum gen. nov., sp. nov., a psychrophilic sulfate-reducing bacterium isolated<br>from a permanently cold marine sediment. International Journal of Systematic and Evolutionary<br>Microbiology, 2013, 63, 959-964. | 1.7  | 36        |
| 12 | Starting Up Microbial Enhanced Oil Recovery. Advances in Biochemical Engineering/Biotechnology, 2013, 142, 1-94.                                                                                                                      | 1.1  | 24        |
| 13 | Enrichment and Genome Sequence of the Group I.1a Ammonia-Oxidizing Archaeon "Ca. Nitrosotenuis<br>uzonensis―Representing a Clade Globally Distributed in Thermal Habitats. PLoS ONE, 2013, 8, e80835.                                 | 2.5  | 84        |
| 14 | Comparative analysis of the N-terminal sequence of Geobacter sulfurreducens AM-1 methacrylate reductase. Microbiology, 2012, 81, 555-564.                                                                                             | 1.2  | 2         |
| 15 | The genome of the ammoniaâ€oxidizing <i><scp>C</scp>andidatus</i> <scp>N</scp> itrososphaera<br>gargensis: insights into metabolic versatility and environmental adaptations. Environmental<br>Microbiology, 2012, 14, 3122-3145.     | 3.8  | 332       |
| 16 | Desulfopila inferna sp. nov., a sulfate-reducing bacterium isolated from the subsurface of a tidal sand-flat. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1626-1630.                                 | 1.7  | 29        |
| 17 | Anaerobic degradation of naphthalene and 2â€methylnaphthalene by strains of marine sulfateâ€reducing<br>bacteria. Environmental Microbiology, 2009, 11, 209-219.                                                                      | 3.8  | 177       |
|    |                                                                                                                                                                                                                                       |      |           |

Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. , 2007, , 265-304.

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Operation of the CO Dehydrogenase/Acetyl Coenzyme A Pathway in both Acetate Oxidation and Acetate<br>Formation by the Syntrophically Acetate-Oxidizing Bacterium Thermacetogenium phaeum. Journal of<br>Bacteriology, 2005, 187, 3471-3476.                   | 2.2 | 121       |
| 20 | Degradation of 2-Methylnaphthalene by a Sulfate-Reducing Enrichment Culture of Mesophilic<br>Freshwater Bacteria. Polycyclic Aromatic Compounds, 2003, 23, 207-218.                                                                                           | 2.6 | 5         |
| 21 | Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Archives of Microbiology, 2002, 178, 53-58.                                                                         | 2.2 | 100       |
| 22 | Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and<br>description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov International Journal of<br>Systematic and Evolutionary Microbiology, 2001, 51, 171-177. | 1.7 | 123       |
| 23 | Initiation of Anaerobic Degradation of <i>p</i> -Cresol by Formation of 4-Hydroxybenzylsuccinate in<br><i>Desulfobacterium cetonicum</i> . Journal of Bacteriology, 2001, 183, 752-757.                                                                       | 2.2 | 78        |
| 24 | Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Archives of Microbiology, 2000, 174, 314-321.                                                                        | 2.2 | 126       |
| 25 | Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphateâ€reducing<br>bacterium. Environmental Microbiology, 1999, 1, 415-420.                                                                                               | 3.8 | 206       |
| 26 | Anaerobic degradation of m -cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Archives of Microbiology, 1999, 172, 287-294.                                                                                         | 2.2 | 73        |
| 27 | Cytochrome c-dependent methacrylate reductase from Geobacter sulfurreducens AM-1. FEBS Journal, 1999, 263, 346-352.                                                                                                                                           | 0.2 | 35        |