
Mathew R Heal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/258012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrating life cycle assessment and a farmer survey of management practices to study environmental impacts of peach production in Beijing, China. Environmental Science and Pollution Research, 2022, , 1.	5.3	1
2	Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime. Atmospheric Chemistry and Physics, 2022, 22, 6291-6308.	4.9	17
3	A new assessment of global and regional budgets, fluxes, and lifetimes of atmospheric reactive N and S gases and aerosols. Atmospheric Chemistry and Physics, 2022, 22, 8343-8368.	4.9	5
4	The Importance of Capturing Local Measurement-Driven Adjustment of Modelled j(NO2). Atmosphere, 2022, 13, 1065.	2.3	1
5	Pan-European rural monitoring network shows dominance of NH ₃ gas and NH ₄ NO ₃ aerosol in inorganic atmospheric pollution load. Atmospheric Chemistry and Physics. 2021. 21. 875-914.	4.9	21
6	Isoprene and monoterpene emissions from alder, aspen and spruce short-rotation forest plantations in the United Kingdom. Biogeosciences, 2021, 18, 2487-2510.	3.3	6
7	Measurement and modelling of the dynamics of NH ₃ surface–atmosphere exchange over the Amazonian rainforest. Biogeosciences, 2021, 18, 2809-2825.	3.3	2
8	Characteristics and Source Apportionment of Black Carbon (BC) in a Suburban Area of Klang Valley, Malaysia. Atmosphere, 2021, 12, 784.	2.3	7
9	Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification. Atmospheric Chemistry and Physics, 2021, 21, 10133-10158.	4.9	15
10	PM ₁ composition and source apportionment at two sites in Delhi, India, across multiple seasons. Atmospheric Chemistry and Physics, 2021, 21, 11655-11667.	4.9	13
11	Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review. Atmospheric Environment, 2021, 262, 118592.	4.1	133
12	A first assessment of the sources of isoprene and monoterpene emissions from a short-rotation coppice Eucalyptus gunnii bioenergy plantation in the United Kingdom. Atmospheric Environment, 2021, 262, 118617.	4.1	4
13	Evaluation of global EMEP MSC-W (rv4.34) WRF (v3.9.1.1) model surface concentrations and wet deposition of reactive N and S with measurements. Geoscientific Model Development, 2021, 14, 7021-7046.	3.6	20
14	Differences in isoprene and monoterpene emissions from cold-tolerant eucalypt species grown in the UK. Atmospheric Pollution Research, 2020, 11, 2011-2021.	3.8	7
15	A chronology of global air quality. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190314.	3.4	87
16	The relationship between personal exposure and ambient PM2.5 and black carbon in Beijing. Science of the Total Environment, 2020, 737, 139801.	8.0	19
17	Air quality in enclosed railway stations: Quantifying the impact of diesel trains through deployment of multi-site measurement and random forest modelling. Environmental Pollution, 2020, 262, 114284.	7.5	10
18	Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest. Atmospheric Chemistry and Physics, 2020, 20, 15551-15584.	4.9	7

#	Article	IF	CITATIONS
19	Modelling public health benefits of various emission control options to reduce NO2 concentrations in Guangzhou. Environmental Research Communications, 2020, 2, 065006.	2.3	1
20	Consistency of Urban Background Black Carbon Concentration Measurements by Portable AE51 and Reference AE22 Aethalometers: Effect of Corrections for Filter Loading. Aerosol and Air Quality Research, 2020, 20, 329-340.	2.1	5
21	Changing supersites: assessing the impact of the southern UK EMEP supersite relocation on measured atmospheric composition. Environmental Research Communications, 2019, 1, 041001.	2.3	11
22	Biases in the Measurement of Ambient Nitrogen Dioxide (NO2) by Palmes Passive Diffusion Tube: A Review of Current Understanding. Atmosphere, 2019, 10, 357.	2.3	12
23	Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model. Atmospheric Chemistry and Physics, 2019, 19, 2881-2898.	4.9	27
24	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)― Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	4.9	95
25	Modelling public health improvements as a result of air pollution control policies in the UK over four decades—1970 to 2010. Environmental Research Letters, 2019, 14, 074001.	5.2	42
26	A hybrid model approach for estimating health burden from NO ₂ in megacities in China: a case study in Guangzhou. Environmental Research Letters, 2019, 14, 124019.	5.2	10
27	Quantifying particulate matter accumulated on leaves by 17 species of urban trees in Beijing, China. Environmental Science and Pollution Research, 2018, 25, 12545-12556.	5.3	58
28	Analysis of the distributions of hourly NO ₂ concentrations contributing to annual average NO ₂ concentrations across the European monitoring network between 2000 and 2014. Atmospheric Chemistry and Physics, 2018, 18, 3563-3587.	4.9	16
29	Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions. Atmospheric Chemistry and Physics, 2018, 18, 4497-4518.	4.9	11
30	Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK. Atmospheric Chemistry and Physics, 2018, 18, 705-733.	4.9	52
31	Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study. Geoscientific Model Development, 2018, 11, 1653-1664.	3.6	17
32	Surface–atmosphere exchange of inorganic water-soluble gases and associated ions in bulk aerosol above agricultural grassland pre- and postfertilisation. Atmospheric Chemistry and Physics, 2018, 18, 16953-16978.	4.9	11
33	Acid gases and aerosol measurements in the UK (1999–2015): regional distributions and trends. Atmospheric Chemistry and Physics, 2018, 18, 16293-16324.	4.9	21
34	The influence of residential and workday population mobility on exposure to air pollution in the UK. Environment International, 2018, 121, 803-813.	10.0	38
35	Land-Use Regression Modelling of Intra-Urban Air Pollution Variation in China: Current Status and Future Needs. Atmosphere, 2018, 9, 134.	2.3	20
36	Temporal changes in field calibration relationships for Aeroqual S500 O3 and NO2 sensor-based monitors. Sensors and Actuators B: Chemical, 2018, 273, 1800-1806.	7.8	22

#	Article	IF	CITATIONS
37	Assessing the Effect of Uncertainty in Input Emissions on Atmospheric Chemistry Transport Model Outputs. Springer Proceedings in Complexity, 2018, , 111-116.	0.3	0
38	Effect of monitoring network design on land use regression models for estimating residential NO2 concentration. Atmospheric Environment, 2017, 149, 24-33.	4.1	21
39	Influence of wind-speed on short-duration NO 2 measurements using Palmes and Ogawa passive diffusion samplers. Atmospheric Environment, 2017, 160, 70-76.	4.1	15
40	A chronology of ratios between black smoke and PM10 and PM2.5 in the context of comparison of air pollution epidemiology concentration-response functions. Environmental Health, 2017, 16, 44.	4.0	6
41	Estimation of spatial patterns of urban air pollution over a 4-week period from repeated 5-min measurements. Atmospheric Environment, 2017, 150, 295-302.	4.1	13
42	Spatiotemporal evaluation of EMEP4UK-WRF v4.3 atmospheric chemistry transport simulations of health-related metrics for NO ₂ , O, and O _{2. 5} for 2001–2010. Geoscientific Model Development, 20 10, 1767-1787.	3.6)17,	23
43	Practical Field Calibration of Portable Monitors for Mobile Measurements of Multiple Air Pollutants. Atmosphere, 2017, 8, 231.	2.3	22
44	Climate change impacts on human health over Europe through its effect on air quality. Environmental Health, 2017, 16, 118.	4.0	80
45	Insights from a Chronology of the Development of Atmospheric Composition Monitoring Networks Since the 1800s. Atmosphere, 2016, 7, 160.	2.3	5
46	The UK particulate matter air pollution episode of March–April 2014: more than Saharan dust. Environmental Research Letters, 2016, 11, 044004.	5.2	40
47	A review of stereochemical implications in the generation of secondary organic aerosol from isoprene oxidation. Environmental Sciences: Processes and Impacts, 2016, 18, 1369-1380.	3.5	14
48	Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies. BMJ Open, 2016, 6, e009493.	1.9	123
49	Regional and hemispheric influences on measured spring peroxyacetyl nitrate (PAN) mixing ratios at the Auchencorth UK EMEP supersite. Atmospheric Research, 2016, 174-175, 135-141.	4.1	9
50	The contributions to long-term health-relevant particulate matter at the UK EMEP supersites between 2010 and 2013: Quantifying the mitigation challenge. Environment International, 2016, 95, 98-111.	10.0	9
51	Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for LondonÂ(ClearfLo) campaign. Atmospheric Chemistry and Physics, 2016, 16, 6453-6473.	4.9	60
52	Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London. Atmospheric Chemistry and Physics, 2016, 16, 13773-13789.	4.9	36
53	The sensitivities of emissions reductions for the mitigation of UK PM _{2.5} . Atmospheric Chemistry and Physics, 2016, 16, 265-276.	4.9	70
54	Myocardial infarction, ST-elevation and non-ST-elevation myocardial infarction and modelled daily pollution concentrations: a case-crossover analysis of MINAP data. Open Heart, 2016, 3, e000429.	2.3	21

#	Article	lF	CITATIONS
55	Greater nitrogen dioxide concentrations at child versus adult breathing heights close to urban main road kerbside. Air Quality, Atmosphere and Health, 2016, 9, 589-595.	3.3	16
56	Temporal persistence of intra-urban spatial contrasts in ambient NO2, O3 and Ox in Edinburgh, UK. Atmospheric Pollution Research, 2016, 7, 734-741.	3.8	20
57	A comparison of isoprene and monoterpene emission rates from the perennial bioenergy crops shortâ€rotation coppice willow and <i>Miscanthus</i> and the annual arable crops wheat and oilseed rape. GCB Bioenergy, 2016, 8, 211-225.	5.6	24
58	Characteristics of ammonia, acid gases, and PM2.5 for three typical land-use types in the North China Plain. Environmental Science and Pollution Research, 2016, 23, 1158-1172.	5.3	81
59	The impact of speciated VOCs on regional ozone increment derived from measurements at the UK EMEP supersites between 1999 and 2012. Atmospheric Chemistry and Physics, 2015, 15, 8361-8380.	4.9	12
60	Sources and contributions of wood smoke during winter in London: assessing local and regional influences. Atmospheric Chemistry and Physics, 2015, 15, 3149-3171.	4.9	76
61	Trends and drivers of ozone human health and vegetation impact metrics from UK EMEP supersite measurements (1990–2013). Atmospheric Chemistry and Physics, 2015, 15, 4025-4042.	4.9	24
62	Personal exposure monitoring of PM 2.5 in indoor and outdoor microenvironments. Science of the Total Environment, 2015, 508, 383-394.	8.0	258
63	Identifying drivers for the intra-urban spatial variability of airborne particulate matter components and their interrelationships. Atmospheric Environment, 2015, 112, 306-316.	4.1	37
64	Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide. Atmospheric Environment, 2015, 100, 111-116.	4.1	92
65	Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bulletin of the American Meteorological Society, 2015, 96, 779-804.	3.3	105
66	Associations between short/medium-term variations in black smoke air pollution and mortality in the Glasgow conurbation, UK. Environment International, 2014, 62, 126-132.	10.0	4
67	Analysis of UK and European NOx and VOC emission scenarios in the Defra model intercomparison exercise. Atmospheric Environment, 2014, 94, 249-257.	4.1	8
68	Volatile organic compound speciation above and within a Douglas fir forest. Atmospheric Environment, 2014, 94, 86-95.	4.1	9
69	The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review. Analytical and Bioanalytical Chemistry, 2014, 406, 81-98.	3.7	52
70	The application of hierarchical cluster analysis and non-negative matrix factorization to European atmospheric monitoring site classification. Atmospheric Research, 2014, 138, 30-40.	4.1	34
71	New Directions: Chemical climatology and assessment of atmospheric composition impacts. Atmospheric Environment, 2014, 87, 261-264.	4.1	9
72	Insights into the Composition and Sources of Rural, Urban and Roadside Carbonaceous PM ₁₀ . Environmental Science & Technology, 2014, 48, 8995-9003.	10.0	24

#	Article	IF	CITATIONS
73	Erratum to "Associations between short/medium-term variations in black smoke air pollution and mortality in the Glasgow conurbation, UK―[Environ. Int. 50C (2012) 1–6]. Environment International, 2014, 62, 125.	10.0	1
74	The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK. Atmospheric Chemistry and Physics, 2014, 14, 8435-8447.	4.9	94
75	The spatial and seasonal variation of nitrogen dioxide and sulfur dioxide in Cape Breton Highlands National Park, Canada, and the association with lichen abundance. Atmospheric Environment, 2013, 64, 303-311.	4.1	29
76	Health burdens of surface ozone in the UK for a range of future scenarios. Environment International, 2013, 61, 36-44.	10.0	67
77	Characterization of methyl bromide and methyl chloride fluxes at temperate freshwater wetlands. Journal of Geophysical Research D: Atmospheres, 2013, 118, 977-991.	3.3	14
78	Measurement error in time-series analysis: a simulation study comparing modelled and monitored data. BMC Medical Research Methodology, 2013, 13, 136.	3.1	25
79	Association between long-term exposure to air pollution and specific causes of mortality in Scotland. Occupational and Environmental Medicine, 2012, 69, 916-924.	2.8	27
80	A Comparison of Short-term and Long-term Air Pollution Exposure Associations with Mortality in Two Cohorts in Scotland. Environmental Health Perspectives, 2012, 120, 1280-1285.	6.0	78
81	Concentration–Response Function for Ozone and Daily Mortality: Results from Five Urban and Five Rural U.K. Populations. Environmental Health Perspectives, 2012, 120, 1411-1417.	6.0	56
82	Particles, air quality, policy and health. Chemical Society Reviews, 2012, 41, 6606.	38.1	551
83	Comparison of models for estimation of long-term exposure to air pollution in cohort studies. Atmospheric Environment, 2012, 62, 530-539.	4.1	12
84	Volatile organic compound emissions from Miscanthus and short rotation coppice willow bioenergy crops. Atmospheric Environment, 2012, 60, 327-335.	4.1	31
85	Associations between short/medium-term variations in black smoke air pollution and mortality in the Glasgow conurbation, UK. Environment International, 2012, 50, 1-6.	10.0	5
86	Development of PTR-MS selectivity for structural isomers: Monoterpenes as a case study. International Journal of Mass Spectrometry, 2012, 310, 10-19.	1.5	37
87	Correlations of particle number concentrations and metals with nitrogen oxides and other traffic-related air pollutants in Glasgow and London. Atmospheric Environment, 2012, 54, 667-678.	4.1	14
88	The relationship between black carbon concentration and black smoke: A more general approach. Atmospheric Environment, 2012, 54, 538-544.	4.1	26
89	Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmospheric Chemistry and Physics, 2011, 11, 8995-9017.	4.9	82
90	Methyl bromide and methyl chloride fluxes from temperate forest litter. Atmospheric Environment, 2011, 45, 1543-1547.	4.1	14

#	Article	IF	CITATIONS
91	Application of 14C analyses to source apportionment of carbonaceous PM2.5 in the UK. Atmospheric Environment, 2011, 45, 2341-2348.	4.1	74
92	Intercomparison study of NOx passive diffusion tubes with chemiluminescence analysers and evaluation of bias factors. Atmospheric Environment, 2011, 45, 3062-3068.	4.1	8
93	Large estragole fluxes from oil palms in Borneo. Atmospheric Chemistry and Physics, 2010, 10, 4343-4358.	4.9	58
94	Identification and quantification of methyl halide sources in a lowland tropical rainforest. Atmospheric Environment, 2010, 44, 1005-1010.	4.1	34
95	Gaseous and particulate water-soluble organic and inorganic nitrogen in rural air in southern Scotland. Atmospheric Environment, 2010, 44, 1506-1514.	4.1	34
96	Ozone, heat and mortality: acute effects in 15 British conurbations. Occupational and Environmental Medicine, 2010, 67, 699-707.	2.8	75
97	Modelling surface ozone during the 2003 heat-wave in the UK. Atmospheric Chemistry and Physics, 2010, 10, 7963-7978.	4.9	159
98	The production and degradation of trichloroacetic acid in soil: Results from in situ soil column experiments. Chemosphere, 2010, 79, 401-407.	8.2	12
99	Long-term CH ₃ Br and CH ₃ Cl flux measurements in temperate salt marshes. Biogeosciences, 2010, 7, 3657-3668.	3.3	26
100	A time-series study of the health effects of water-soluble and total-extractable metal content of airborne particulate matter. Occupational and Environmental Medicine, 2009, 66, 636-638.	2.8	7
101	Using Mass Reconstruction along a Four-Site Transect as a Method to Interpret PM10 in West-Central Scotland,United Kingdom. Journal of the Air and Waste Management Association, 2009, 59, 1429-1436.	1.9	12
102	Reactive uptake of ozone at simulated leaf surfaces: Implications for â€~non-stomatal' ozone flux. Atmospheric Environment, 2009, 43, 1116-1123.	4.1	53
103	Atmospheric nitrogen deposition in south-east Scotland: Quantification of the organic nitrogen fraction in wet, dry and bulk deposition. Atmospheric Environment, 2009, 43, 4087-4094.	4.1	52
104	Growing season methyl bromide and methyl chloride fluxes at a subâ€arctic wetland in Sweden. Geophysical Research Letters, 2009, 36, .	4.0	13
105	Current and future climate- and air pollution-mediated impacts on human health. Environmental Health, 2009, 8, S8.	4.0	53
106	Quantifying the Spatial and Temporal Variation of Ground-Level Ozone in the Rural Annapolis Valley, Nova Scotia, Canada Using Nitrite-Impregnated Passive Samplers. Journal of the Air and Waste Management Association, 2009, 59, 310-320.	1.9	20
107	Methyl bromide emissions to the atmosphere from temperate woodland ecosystems. Global Change Biology, 2008, 14, 2539-2547.	9.5	14
108	The effect of absorbent grid preparation method on precision and accuracy of ambient nitrogen dioxide measurements using Palmes passive diffusion tubes. Journal of Environmental Monitoring, 2008, 10, 1363.	2.1	5

#	Article	IF	CITATIONS
109	Exposure to Concentrated Ambient Particles Does Not Affect Vascular Function in Patients with Coronary Heart Disease. Environmental Health Perspectives, 2008, 116, 709-715.	6.0	106
110	Aqueous-phase nitration of phenol by N2O5 and ClNO2. Atmospheric Environment, 2007, 41, 3515-3520.	4.1	48
111	Temporal and spatial variation in methyl bromide flux from a salt marsh. Geophysical Research Letters, 2006, 33, .	4.0	22
112	Single-Particle Detection Efficiencies of Aerosol Time-of-Flight Mass Spectrometry during the North Atlantic Marine Boundary Layer Experiment. Environmental Science & Technology, 2006, 40, 5029-5035.	10.0	59
113	A single-particle characterization of a mobile Versatile Aerosol Concentration Enrichment System for exposure studies. Particle and Fibre Toxicology, 2006, 3, 8.	6.2	20
114	Natural Formation and Degradation of Chloroacetic Acids and Volatile Organochlorines in Forest Soil. Challenges to understanding (12 pp). Environmental Science and Pollution Research, 2005, 12, 233-244.	5.3	46
115	Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK. Atmospheric Environment, 2005, 39, 1417-1430.	4.1	197
116	Interpretation of variations in fine, coarse and black smoke particulate matter concentrations in a northern European city. Atmospheric Environment, 2005, 39, 3711-3718.	4.1	20
117	Addressing analytical uncertainties in the determination of trichloroacetic acid in soil. Journal of Environmental Monitoring, 2005, 7, 137.	2.1	7
118	The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation. Respiratory Research, 2005, 6, 43.	3.6	36
119	Soluble transition metals in welding fumes cause inflammation via activation of NF-κB and AP-1. Toxicology Letters, 2005, 158, 152-157.	0.8	33
120	Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro. Toxicology and Applied Pharmacology, 2004, 196, 95-107.	2.8	128
121	Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry. Journal of Environmental Monitoring, 2004, 6, 124.	2.1	58
122	Evaluation of method of preparation of passive diffusion tubes for measurement of ambient nitrogen dioxide. Journal of Environmental Monitoring, 2004, 6, 12.	2.1	16
123	Fluxes and Reservoirs of Trichloroacetic Acid at a Forest and Moorland Catchment. Environmental Science & Technology, 2004, 38, 1639-1647.	10.0	13
124	Characterization of individual airborne particles by using aerosol time-of-flight mass spectrometry at Mace Head, Ireland. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	57
125	Trichloroacetic acid cycling in Sitka spruce saplings and effects on sapling health following long term exposure. Environmental Pollution, 2004, 130, 165-176.	7.5	8
126	Fluxes of trichloroacetic acid through a conifer forest canopy. Environmental Pollution, 2004, 132, 73-84.	7.5	8

#	Article	IF	CITATIONS
127	New data for water losses from mature Sitka spruce plantations in temperate upland catchments / Nouvelles données pour les pertes d'eau de plantations adultes de sapins de Sitka en bassins versants tempérés d'altitude. Hydrological Sciences Journal, 2004, 49, .	2.6	9
128	The routes and kinetics of trichloroacetic acid uptake and elimination in Sitka spruce (Picea) Tj ETQq0 0 0 rgBT /0 4447-4452.	Overlock 1 4.1	10 Tf 50 707 ⁻ 12
129	Atmospheric Concentrations and Deposition of Trichloroacetic Acid in Scotland:Â Results from a 2-Year Sampling Campaign. Environmental Science & Technology, 2003, 37, 2627-2633.	10.0	16
130	Long-Term Exposure of Sitka Spruce Seedlings to Trichloroacetic Acid. Environmental Science & Technology, 2003, 37, 2953-2957.	10.0	11
131	Mass Accommodation Coefficients of Phenol, 2-Nitrophenol, and 3-Methylphenol over the Temperature Range 278â^'298 K. Journal of Physical Chemistry A, 2002, 106, 5120-5127.	2.5	13
132	The mass accommodation coefficient of ozone on an aqueous surface. Physical Chemistry Chemical Physics, 2002, 4, 3365-3369.	2.8	30
133	Experimentally determined Henry's Law coefficients of phenol, 2-methylphenol and 2-nitrophenol in the temperature range 281–302K. Atmospheric Environment, 2002, 36, 1843-1851.	4.1	29
134	The influence of weather-type and long-range transport on airborne particle concentrations in Edinburgh, UK. Atmospheric Environment, 2002, 36, 5343-5354.	4.1	72
135	The Henry's law coefficient of 2-nitrophenol over the temperature range 278–303 K. Chemosphere, 2001, 45, 309-314.	8.2	20
136	The influence of simplified peroxy radical chemistry on the interpretation of NO2–NO–O3 surface exchange. Atmospheric Environment, 2001, 35, 1687-1696.	4.1	7
137	Title is missing!. Environmental Monitoring and Assessment, 2000, 62, 333-340.	2.7	3
138	Systematic Biases in Measurement of Urban Nitrogen Dioxide using Passive Diffusion Samplers. Environmental Monitoring and Assessment, 2000, 62, 39-54.	2.7	25
139	Effect of long-range transport on local PM 10 concentrations in the UK. International Journal of Environmental Health Research, 2000, 10, 229-238.	2.7	22
140	A new method for the determination of trichloroacetic acid in spruce foliage and other environmental media. Journal of Environmental Monitoring, 2000, 2, 447-450.	2.1	6
141	Intercomparison of five PM10 monitoring devices and the implications for exposure measurement in epidemiological research. Journal of Environmental Monitoring, 2000, 2, 455-461.	2.1	29
142	Overestimation of urban nitrogen dioxide by passive diffusion tubes: a comparative exposure and model study. Atmospheric Environment, 1999, 33, 513-524.	4.1	53
143	Application of passive diffusion tubes to short-term indoor and personal exposure measurement of NO. Environment International, 1999, 25, 3-8.	10.0	3
144	The influence of meteorology and atmospheric transport patterns on the chemical composition of rainfall in south-east England. Atmospheric Environment, 1998, 32, 1039-1048.	4.1	36

#	Article	IF	CITATIONS
145	A numerical evaluation of chemical interferences in the measurement of ambient nitrogen dioxide by passive diffusion samplers. Atmospheric Environment, 1997, 31, 1911-1923.	4.1	42
146	Mass accommodation of aniline, phenol and toluene on aqueous droplets. Geophysical Research Letters, 1995, 22, 3043-3046.	4.0	10
147	Collisional behaviour with Ar of the ♭ doublets of CH(X2Î)N″= 15 produced in the two-photon dissociation of CH2CO at 279.3 nm. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1467-1471.	1.7	17
148	Production of CH(X2Î) from the multiphoton dissociation of CH2CO at wavelengths of 279.3 and 308 nm. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 523-531.	1.7	14
149	Rate constant for reaction of CH (X2Î) with ketene. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2121-2123.	1.7	19
150	Temperature dependence of CH2 (ã 1A1) removal rates by Ar, NO and H2. Chemical Physics Letters, 1991, 180, 533-540.	2.6	19