## Zerrin Sezgin-Bayindir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2579819/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A novel delivery system for enhancing bioavailability of S-adenosyl-l-methionine: Pectin<br>nanoparticles-in-microparticles and their in vitro - in vivo evaluation'. Journal of Drug Delivery<br>Science and Technology, 2021, 61, 102096. | 1.4 | 11        |
| 2  | Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in<br>Cancer Therapy. Antioxidants, 2021, 10, 685.                                                                                                | 2.2 | 28        |
| 3  | A study to enhance the oral bioavailability of s-adenosyl-l-methionine (SAMe): SLN and SLN nand SLN nanocomposite particles. Chemistry and Physics of Lipids, 2021, 237, 105086.                                                            | 1.5 | 10        |
| 4  | Polyphenols as Antioxidants for Extending Food Shelf-Life and in the Prevention of Health Diseases:<br>Encapsulation and Interfacial Phenomena. Biomedicines, 2021, 9, 1909.                                                                | 1.4 | 25        |
| 5  | Development and <i>In vitro</i> Evaluation of Nifedipine Gel Formulations for Anorectal Applications.<br>Current Drug Delivery, 2020, 17, 126-139.                                                                                          | 0.8 | 2         |
| 6  | Characterization and optimization of colon targeted S-adenosyl-L-methionine loaded chitosan nanoparticles. Journal of Research in Pharmacy, 2019, 23, 914-926.                                                                              | 0.1 | 10        |
| 7  | Investigations on clonazepam-loaded polymeric micelle-like nanoparticles for safe drug administration during pregnancy. Journal of Microencapsulation, 2018, 35, 149-164.                                                                   | 1.2 | 9         |
| 8  | Evaluation of various block copolymers for micelle formation and brain drug delivery: InÂvitro<br>characterization and cellular uptake studies. Journal of Drug Delivery Science and Technology, 2016,<br>36, 120-129.                      | 1.4 | 36        |
| 9  | In situ niosome forming maltodextrin proniosomes of candesartan cilexetil: In vitro and in vivo evaluations. International Journal of Biological Macromolecules, 2016, 82, 453-463.                                                         | 3.6 | 39        |
| 10 | Paclitaxel-loaded niosomes for intravenous administration: pharmacokineticsand tissue distribution in rats. Turkish Journal of Medical Sciences, 2015, 45, 1403-1412.                                                                       | 0.4 | 26        |
| 11 | Development and Characterization of Mixed Niosomes for Oral Delivery Using Candesartan Cilexetil<br>as a Model Poorly Water-Soluble Drug. AAPS PharmSciTech, 2015, 16, 108-117.                                                             | 1.5 | 83        |
| 12 | Provesicles as Novel Drug Delivery Systems. Current Pharmaceutical Biotechnology, 2015, 16, 344-364.                                                                                                                                        | 0.9 | 22        |
| 13 | Stability Studies on Piroxicam Encapsulated Niosomes. Current Drug Delivery, 2015, 12, 192-199.                                                                                                                                             | 0.8 | 42        |
| 14 | Paclitaxel-loaded niosomes for intravenous administration: pharmacokinetics and tissue distribution in rats. Turkish Journal of Medical Sciences, 2015, 45, 1403-12.                                                                        | 0.4 | 5         |
| 15 | Niosomes encapsulating paclitaxel for oral bioavailability enhancement: preparation, characterization, pharmacokinetics and biodistribution. Journal of Microencapsulation, 2013, 30, 796-804.                                              | 1.2 | 42        |
| 16 | Investigation of Formulation Variables and Excipient Interaction on the Production of Niosomes. AAPS PharmSciTech, 2012, 13, 826-835.                                                                                                       | 1.5 | 67        |
| 17 | The use of isolated enterocytes to study Phase I intestinal drug metabolism: validation with rat and pig intestine. Fundamental and Clinical Pharmacology, 2011, 25, 104-114.                                                               | 1.0 | 5         |
| 18 | Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. Journal of Pharmaceutical Sciences, 2010, 99, 2049-2060.                                                                              | 1.6 | 245       |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Investigation of pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration. International Journal of Pharmaceutics, 2007, 332, 161-167.              | 2.6 | 67        |
| 20 | Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 64, 261-268. | 2.0 | 290       |