Michal Kohout

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2579735/publications.pdf

Version: 2024-02-01

25 284 10 17
papers citations h-index g-index

25 25 25 458 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	WO3 and WO3-x thin films prepared by DC hollow cathode discharge. Vacuum, 2022, 195, 110679.	3.5	7
2	Vacuum ultraviolet photoconductive detector based on anatase TiO2 thin film deposited on SiO2 substrate. Materials Today: Proceedings, 2022, , .	1.8	0
3	Effect of Substrate and Thickness on the Photoconductivity of Nanoparticle Titanium Dioxide Thin Film Vacuum Ultraviolet Photoconductive Detector. Nanomaterials, 2022, 12, 10.	4.1	10
4	Titanium dioxide thin films as vacuum ultraviolet photoconductive detectors with enhanced photoconductivity by gamma-ray irradiation. Thin Solid Films, 2021, 726, 138637.	1.8	8
5	Ni nanoparticles in TiO2 films and their magnetic properties. Physica B: Condensed Matter, 2020, 578, 411862.	2.7	3
6	High rate deposition of photoactive TiO2 films by hot hollow cathode. Surface and Coatings Technology, 2020, 383, 125256.	4.8	10
7	Low temperature synthesis of transparent conductive boron doped diamond films for optoelectronic applications: Role of hydrogen on the electrical properties. Applied Materials Today, 2020, 19, 100633.	4.3	8
8	Temperature dependence of the Hall coefficient of sensitive layer materials considered for DEMO Hall sensors. Fusion Engineering and Design, 2020, 153, 111454.	1.9	9
9	Rutile TiO2 thin film electrodes with excellent blocking function and optical transparency. Electrochimica Acta, 2019, 321, 134685.	5. 2	19
10	Co3O4 thin films prepared by hollow cathode discharge. Surface and Coatings Technology, 2019, 366, 303-310.	4.8	19
11	Prospects for the steady-state magnetic diagnostic based on antimony Hall sensors for future fusion power reactors. Fusion Engineering and Design, 2019, 146, 526-530.	1.9	13
12	Preparation and photoelectrochemical performance of porous TiO2/graphene nanocomposite films. Materials Letters, 2018, 213, 109-113.	2.6	10
13	Optically transparent composite diamond/Ti electrodes. Carbon, 2017, 119, 179-189.	10.3	18
14	System for time-resolved laser absorption spectroscopy and its application to high-power impulse magnetron sputtering. Review of Scientific Instruments, 2017, 88, 023105.	1.3	0
15	Development of Bismuth Hall sensors for ITER steady state magnetic diagnostics. Fusion Engineering and Design, 2017, 123, 690-694.	1.9	23
16	High magnetic field test of bismuth Hall sensors for ITER steady state magnetic diagnostic. Review of Scientific Instruments, 2016, 87, 11D446.	1.3	20
17	Ni–TiO 2 nanocomposite films and their magnetic properties. Physica B: Condensed Matter, 2016, 503, 44-50.	2.7	9
18	Recent results and challenges in development of metallic Hall sensors for fusion reactors. AIP Conference Proceedings, 2014, , .	0.4	4

#	Article	IF	CITATION
19	ZnO thin films prepared by surfatron produced discharge. Catalysis Today, 2014, 230, 119-124.	4.4	3
20	Optical emission spectroscopy of High Power Impulse Magnetron Sputtering (HiPIMS) of CIGS thin films. , $2014, $, .		3
21	Performance of metal Hall sensors based on copper. Fusion Engineering and Design, 2013, 88, 1310-1314.	1.9	13
22	Preparation of CIGS Thin Films by HiPIMS or DC Sputtering and Various Selenization Processes. Journal of Advanced Oxidation Technologies, 2013, 16 , .	0.5	2
23	Photo-induced electrochemical functionality of the TiO2 nanoscale films. Electrochimica Acta, 2009, 54, 3352-3359.	5. 2	34
24	Preparation of thin phthalocyanine layers and their structural and absorption properties. Thin Solid Films, 2009, 517, 5274-5279.	1.8	21
25	Advanced methods for titanium (IV) oxide thin functional coatings. Surface and Coatings Technology, 2008, 202, 2379-2383.	4.8	18