Matthew Steele-Macinnis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/25793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HokieFlincs_H2O-NaCl : A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H 2 O–NaCl. Computers and Geosciences, 2012, 49, 334-337.	4.2	279
2	Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochimica Et Cosmochimica Acta, 2011, 75, 21-40.	3.9	178
3	Bubbles matter: An assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. American Mineralogist, 2015, 100, 806-823.	1.9	175
4	A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica Et Cosmochimica Acta, 2012, 92, 14-22.	3.9	118
5	Thermodynamic Model for the Effect of Post-entrapment Crystallization on the H2O-CO2 Systematics of Vapor-saturated, Silicate Melt Inclusions. Journal of Petrology, 2011, 52, 2461-2482.	2.8	104
6	Geothermobarometric history of subduction recorded by quartz inclusions in garnet. Geochemistry, Geophysics, Geosystems, 2014, 15, 350-360.	2.5	74
7	Calibration of zircon as a Raman spectroscopic pressure sensor to high temperatures and application to water-silicate melt systems. American Mineralogist, 2013, 98, 643-650.	1.9	55
8	Fluids associated with carbonatitic magmatism: A critical review and implications for carbonatite magma ascent. Earth-Science Reviews, 2021, 215, 103509.	9.1	53
9	Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from <i>ab initio</i> molecular dynamics. Journal of Chemical Physics, 2012, 136, 154501.	3.0	50
10	Fluid inclusions in the system H2O-NaCl-CO2: An algorithm to determine composition, density and isochore. Chemical Geology, 2018, 498, 31-44.	3.3	49
11	Magma mixing and high fountaining during the 1959 KÄ«lauea Iki eruption, Hawaiâ€~i. Earth and Planetary Science Letters, 2014, 400, 102-112.	4.4	42
12	The role of fluid phase immiscibility in quartz dissolution and precipitation in sub-seafloor hydrothermal systems. Earth and Planetary Science Letters, 2012, 321-322, 139-151.	4.4	41
13	Application of low-temperature microthermometric data for interpreting multicomponent fluid inclusion compositions. Earth-Science Reviews, 2016, 159, 14-35.	9.1	41
14	Multi-reservoir fluid mixing processes in rift-related hydrothermal veins, Schwarzwald, SW-Germany. Journal of Geochemical Exploration, 2018, 186, 158-186.	3.2	40
15	Formation of bedding-parallel, fibrous calcite veins in laminated source rocks of the Eocene Dongying Depression: A growth model based on petrographic observations. International Journal of Coal Geology, 2018, 200, 18-35.	5.0	40
16	Solubility and speciation of iron in hydrothermal fluids. Geochimica Et Cosmochimica Acta, 2019, 252, 126-143.	3.9	38
17	Direct evidence for fluid overpressure during hydrocarbon generation and expulsion from organic-rich shales. Geology, 2020, 48, 374-378.	4.4	37
18	Vibrational properties of silica species in MgO–SiO2 glasses obtained from ab initio molecular dynamics. Chemical Geology, 2013, 346, 22-33.	3.3	35

#	Article	IF	CITATIONS
19	A fundamental role of carbonate–sulfate melts in the formation of iron oxide–apatite deposits. Nature Geoscience, 2020, 13, 751-757.	12.9	35
20	Detection of liquid H ₂ O in vapor bubbles in reheated melt inclusions: Implications for magmatic fluid composition and volatile budgets of magmas?. American Mineralogist, 2016, 101, 1691-1695.	1.9	32
21	Quartz-in-garnet inclusion barometry under fire: Reducing uncertainty from model estimates. Geology, 2016, 44, 699-702.	4.4	31
22	Complex carbonate-sulfate brines in fluid inclusions from carbonatites: Estimating compositions in the system H2O-Na-K-CO3-SO4-Cl. Geochimica Et Cosmochimica Acta, 2020, 277, 224-242.	3.9	31
23	Sulfate brines in fluid inclusions of hydrothermal veins: Compositional determinations in the system H2O-Na-Ca-Cl-SO4. Geochimica Et Cosmochimica Acta, 2017, 209, 184-203.	3.9	30
24	Synthetic fluid inclusions XIX. Experimental determination of the vapor-saturated liquidus of the system H2O–NaCl–FeCl2. Geochimica Et Cosmochimica Acta, 2015, 148, 34-49.	3.9	28
25	The Alichur Dome, South Pamir, Western India–Asia Collisional Zone: Detailing the Neogene Shakhdara–Alichur Synâ€collisional Gneissâ€Dome Complex and Connection to Lithospheric Processes. Tectonics, 2020, 39, e2019TC005735.	2.8	27
26	Single-crystal hematite (U–Th)/He dates and fluid inclusions document widespread Cryogenian sand injection in crystalline basement. Earth and Planetary Science Letters, 2018, 500, 145-155.	4.4	26
27	Orogenic gold formation in an evolving, decompressing hydrothermal system: Genesis of the Samut gold deposit, Eastern Desert, Egypt. Ore Geology Reviews, 2019, 105, 236-257.	2.7	25
28	Phase equilibria, thermodynamic properties, and solubility of quartz in saline-aqueous-carbonic fluids: Application to orogenic and intrusion-related gold deposits. Geochimica Et Cosmochimica Acta, 2020, 283, 201-221.	3.9	25
29	Ion Association in Hydrothermal Sodium Sulfate Solutions Studied by Modulated FT-IR-Raman Spectroscopy and Molecular Dynamics. Journal of Physical Chemistry B, 2015, 119, 9847-9857.	2.6	24
30	Synthetic fluid inclusions XX. Critical PTx properties of H2O–FeCl2 fluids. Geochimica Et Cosmochimica Acta, 2015, 148, 50-61.	3.9	23
31	Evidence for iron-rich sulfate melt during magnetite(-apatite) mineralization at El Laco, Chile. Geology, 2021, 49, 1044-1048.	4.4	22
32	Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	21
33	Fluid inclusion phase ratios, compositions and densities from ambient temperature to homogenization, based on PVTX properties of H2O NaCl. Earth-Science Reviews, 2019, 198, 102924.	9.1	20
34	Volumetrics of CO ₂ Storage in Deep Saline Formations. Environmental Science & Technology, 2013, 47, 79-86.	10.0	19
35	Effect of the vapor phase on the salinity of halite-bearing aqueous fluid inclusions estimated from the halite dissolution temperature. Geochimica Et Cosmochimica Acta, 2013, 115, 205-216.	3.9	19
36	Seismic precursors linked to highly compressible fluids at oceanic transform faults. Nature Geoscience, 2014, 7, 757-761.	12.9	19

#	Article	IF	CITATIONS
37	Synthetic saline-aqueous and hydrocarbon fluid inclusions trapped in calcite at temperatures and pressures relevant to hydrocarbon basins: A reconnaissance study. Marine and Petroleum Geology, 2016, 76, 88-97.	3.3	19
38	A model for the solubility of minerals in saline aqueous fluids in the crust and upper mantle. Numerische Mathematik, 2019, 319, 754-787.	1.4	19
39	Shift in the Raman symmetric stretching band of N ₂ , CO ₂ , and CH ₄ as a function of temperature, pressure, and density. Journal of Raman Spectroscopy, 2020, 51, 555-568.	2.5	19
40	Extreme fractionation and magmatic–hydrothermal transition in the formation of the Abu Dabbab rare-metal granite, Eastern Desert, Egypt. Lithos, 2020, 352-353, 105329.	1.4	18
41	PVTX Properties of H2O-CO2-"salt" at PTX Conditions Applicable to Carbon Sequestration in Saline Formations. Reviews in Mineralogy and Geochemistry, 2013, 77, 123-152.	4.8	17
42	QuIB Calc: A MATLAB® script for geobarometry based on Raman spectroscopy and elastic modeling of quartz inclusions in garnet. Computers and Geosciences, 2014, 66, 155-157.	4.2	17
43	Coarse muscovite veins and alteration deep in the Yerington batholith, Nevada: insights into fluid exsolution in the roots of porphyry copper systems. Mineralium Deposita, 2017, 52, 463-470.	4.1	17
44	Relationship between Raman spectral features and fugacity in mixtures of gases. Journal of Raman Spectroscopy, 2018, 49, 581-593.	2.5	17
45	Vibrational mode frequencies of H4SiO4, D4SiO4, H6Si2O7, and H6Si3O9 in aqueous environment, obtained from <i>ab initio</i> molecular dynamics. Journal of Chemical Physics, 2012, 137, 164506.	3.0	16
46	Magmatic evolution of the Campi Flegrei and Procida volcanic fields, Italy, based on interpretation of data from well-constrained melt inclusions. Earth-Science Reviews, 2018, 185, 325-356.	9.1	16
47	Barometric constraints based on apatite inclusions in garnet. American Mineralogist, 2017, 102, 743-749.	1.9	13
48	Coarse muscovite veins and alteration in porphyry systems. Ore Geology Reviews, 2019, 113, 103045.	2.7	13
49	Silicate speciation in H2O–Na2O–SiO2 fluids from 3 to 40 mol% SiO2, to 600 °C and 2 GPa. Geochimica Et Cosmochimica Acta, 2014, 136, 126-141.	3.9	11
50	Pressures of skarn mineralization at Casting Copper, Nevada, USA, based on apatite inclusions in garnet. Geology, 2017, 45, 947-950.	4.4	11
51	Speciation and Structural Properties of Hydrothermal Solutions of Sodium and Potassium Sulfate Studied by Molecular Dynamics Simulations. ChemPhysChem, 2016, 17, 1446-1453.	2.1	10
52	Texture, trace elements, sulfur and He-Ar isotopes in pyrite: Implication for ore-forming processes and fluid source of the Guoluolongwa gold deposit, East Kunlun metallogenic belt. Ore Geology Reviews, 2021, 136, 104260.	2.7	10
53	Formation of hydrothermal fluorite-hematite veins by mixing of continental basement brine and redbed-derived fluid: Schwarzwald mining district, SW-Germany. Journal of Geochemical Exploration, 2020, 212, 106512.	3.2	9
54	Salt precipitation in magmatic-hydrothermal systems associated with upper crustal plutons. Geology, 0, , G37163.1.	4.4	8

#	Article	IF	CITATIONS
55	Sodic-Calcic Family of Alteration in Porphyry Systems of Arizona and Adjacent New Mexico. Economic Geology, 2019, 114, 745-770.	3.8	8
56	Synthetic Fluid Inclusions XXIV. In situ Monitoring of the Carbonation of Olivine Under Conditions Relevant to Carbon Capture and Storage Using Synthetic Fluid Inclusion Micro-Reactors: Determination of Reaction Rates. Frontiers in Climate, 2021, 3, .	2.8	8
57	Quartz precipitation and fluid inclusion characteristics in sub-seafloor hydrothermal systems associated with volcanogenic massive sulfide deposits. Open Geosciences, 2012, 4, 275-286.	1.7	7
58	Synthetic fluid inclusions XXII: Properties of H2O-NaCl ± KCl fluid inclusions trapped under vapor- and salt-saturated conditions with emphasis on the effect of KCl on phase equilibria. Geochimica Et Cosmochimica Acta, 2020, 272, 78-92.	3.9	6
59	Seeking the most hydrous, primitive arc melts: The glass is half full. American Mineralogist, 2019, 104, 1217-1218.	1.9	5
60	Thermobarometry of Three Skarns in the Ludwig Area, Nevada, Based On Raman Spectroscopy and Elastic Modeling of Mineral Inclusions in Garnet. Canadian Mineralogist, 2019, 57, 25-45.	1.0	5
61	Fluid evolution of a hematite-dominated, magmatic-hydrothermal Cu-Au deposit at Qibaoshan, Shandong Province, China. Ore Geology Reviews, 2021, 131, 104052.	2.7	4
62	A comprehensive numerical model for the thermodynamic and transport properties of H2O-NaCl fluids. Chemical Geology, 2020, 557, 119840.	3.3	4
63	Mixing of brine with oil triggered sphalerite deposition at Pine Point, Northwest Territories, Canada. Geology, 2021, 49, 488-492.	4.4	3
64	Reply to the comment by R.J. Bakker on the paper "Effect of the vapor phase on the salinity of halite-bearing aqueous fluid inclusions―by M. Steele-MacInnis and R.J. Bodnar. Geochimica Et Cosmochimica Acta, 2014, 135, 354-358.	3.9	2
65	Neoproterozoic copper-gold mineralization in the Amani area, southwestern Tanzania. Ore Geology Reviews, 2021, 132, 104070.	2.7	2
66	Anhydrite replacement reaction in nodular pyrite breccia and its geochemical controls on the δ34S signature of pyrite in the TAG hydrothermal mound, 26° N Mid Atlantic Ridge. Lithos, 2021, 400-401, 106357.	1.4	2
67	A model for the solubility of anhydrite in H2O-NaCl fluids from 25 to 800â€ [−] °C, 0.1 to 1400â€ [−] MPa, and 0 to 60†wt% NaCl: Applications to hydrothermal ore-forming systems. Chemical Geology, 2022, 587, 120609.	3.3	2
68	Hydrothermal properties of the COS/D2 water model: a polarizable charge-on-spring water model, at elevated temperatures and pressures. RSC Advances, 2015, 5, 75846-75856.	3.6	1
69	An Occurrence of Phlogopite-rich Alteration in the Yerington District, Nevada. Canadian Mineralogist, 2019, 57, 271-294.	1.0	0