Joost de Gouw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2579085/publications.pdf

Version: 2024-02-01

333 papers 32,080 citations

93 h-index ⁷⁹⁵⁰
149
g-index

484 all docs

484 docs citations

times ranked

484

14045 citing authors

#	Article	IF	CITATIONS
1	Measurements of volatile organic compounds in the earth's atmosphere using protonâ€transferâ€reaction mass spectrometry. Mass Spectrometry Reviews, 2007, 26, 223-257.	5.4	1,017
2	Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science, 2018, 359, 760-764.	12.6	716
3	Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. Journal of Geophysical Research, 2005, 110, .	3.3	689
4	The Indian Ocean Experiment: Widespread Air Pollution from South and Southeast Asia. Science, 2001, 291, 1031-1036.	12.6	687
5	A study of secondary organic aerosol formation in the anthropogenicâ€influenced southeastern United States. Journal of Geophysical Research, 2007, 112, .	3.3	517
6	Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 37-42.	7.1	496
7	Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophysical Research Letters, 2008, 35, .	4.0	388
8	Organic Aerosols in the Earth's Atmosphere. Environmental Science & Technology, 2009, 43, 7614-7618.	10.0	374
9	Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions. Environmental Science & Emp; Technology, 2017, 51, 1074-1093.	10.0	348
10	Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmospheric Chemistry and Physics, 2011, 11, 7669-7686.	4.9	329
11	Source Signature of Volatile Organic Compounds from Oil and Natural Gas Operations in Northeastern Colorado. Environmental Science & Environmental Sci	10.0	305
12	Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry. International Journal of Mass Spectrometry, 2003, 223-224, 365-382.	1.5	289
13	Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophysical Research Letters, 2009, 36, .	4.0	289
14	Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. Chemical Reviews, 2017, 117, 13187-13229.	47.7	282
15	Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 3405-3425.	4.9	278
16	Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1516-1521.	7.1	269
17	Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 2011, 11, 1989-2013.	4.9	266
18	Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmospheric Chemistry and Physics, 2013, 13, 89-116.	4.9	266

#	Article	IF	CITATIONS
19	High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature, 2014, 514, 351-354.	27.8	265
20	Global budget of methanol: Constraints from atmospheric observations. Journal of Geophysical Research, 2005, 110 , .	3.3	263
21	Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmospheric Chemistry and Physics, 2011, 11, 2423-2453.	4.9	259
22	Chemical data quantify <i>Deepwater Horizon</i> hydrocarbon flow rate and environmental distribution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20246-20253.	7.1	258
23	Determination of urban volatile organic compound emission ratios and comparison with an emissions database. Journal of Geophysical Research, 2007, 112, .	3.3	254
24	Validation of Atmospheric VOC Measurements by Proton-Transfer- Reaction Mass Spectrometry Using a Gas-Chromatographic Preseparation Method. Environmental Science & Environmental Science & 2494-2501.	10.0	248
25	Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. Atmospheric Chemistry and Physics, 2018, 18, 3299-3319.	4.9	233
26	Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9233-9257.	3.3	231
27	Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. Journal of Geophysical Research, 2009, 114, .	3.3	230
28	Intermediate-Volatility Organic Compounds: A Large Source of Secondary Organic Aerosol. Environmental Science & Environmental	10.0	221
29	Reduced emissions of <scp>CO₂</scp> , <scp>NOx</scp> , and <scp>SO₂</scp> from U.S. power plants owing to switch from coal to natural gas with combined cycle technology. Earth's Future, 2014, 2, 75-82.	6.3	219
30	Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. Journal of Geophysical Research, 2003, 108, .	3.3	218
31	Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States. Atmospheric Chemistry and Physics, 2010, 10, 11115-11130.	4.9	218
32	Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3. Atmospheric Chemistry and Physics, 2013, 13, 11551-11571.	4.9	218
33	Emission ratios of anthropogenic volatile organic compounds in northern midâ€latitude megacities: Observations versus emission inventories in Los Angeles and Paris. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2041-2057.	3.3	210
34	Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis. Journal of Geophysical Research, 2012, 117, .	3.3	207
35	Proton-Transfer-Reaction Mass Spectrometry as a New Tool for Real Time Analysis of Root-Secreted Volatile Organic Compounds in Arabidopsis. Plant Physiology, 2004, 135, 47-58.	4.8	204
36	Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21360-21365.	7.1	203

#	Article	IF	Citations
37	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	3.3	199
38	A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 2015, 15, 6283-6304.	4.9	197
39	A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. Journal of Geophysical Research, 2012, 117, .	3.3	195
40	Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere. International Journal of Mass Spectrometry, 2008, 274, 48-55.	1.5	193
41	Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophysical Research Letters, 2012, 39, .	4.0	189
42	Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2038-2043.	7.1	186
43	Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2015, 15, 11807-11833.	4.9	185
44	Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions. Journal of Geophysical Research, 2012, 117, .	3.3	183
45	Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere. Journal of Geophysical Research, 2003, 108, .	3.3	179
46	Airborne measurements of carbonaceous aerosol soluble in water over northeastern United States: Method development and an investigation into water-soluble organic carbon sources. Journal of Geophysical Research, 2006, 111 , .	3.3	179
47	Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Physical Chemistry Chemical Physics, 2016, 18, 10241-10254.	2.8	179
48	Nitryl Chloride and Molecular Chlorine in the Coastal Marine Boundary Layer. Environmental Science & Environmental & E	10.0	177
49	Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US. Atmospheric Chemistry and Physics, 2015, 15, 13915-13938.	4.9	177
50	Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. Journal of Geophysical Research, 2008, 113, .	3.3	173
51	In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007: implications for gas- and particle-phase chemistry. Atmospheric Chemistry and Physics, 2009, 9, 5505-5518.	4.9	172
52	An important contribution to springtime Arctic aerosol from biomass burning in Russia. Geophysical Research Letters, 2010, 37, .	4.0	172
53	A case study of transpacific warm conveyor belt transport: Influence of merging airstreams on trace gas import to North America. Journal of Geophysical Research, 2004, 109, .	3.3	169
54	Evaluation of a New Reagent-Ion Source and Focusing Ion–Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. Analytical Chemistry, 2018, 90, 12011-12018.	6.5	168

#	Article	IF	Citations
55	Quantifying sources of methane using light alkanes in the Los Angeles basin, California. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4974-4990.	3.3	167
56	Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8966-8971.	7.1	166
57	Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	165
58	Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2119-2139.	3.3	164
59	Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill. Science, 2011, 331, 1295-1299.	12.6	162
60	Correlation of secondary organic aerosol with odd oxygen in Mexico City. Geophysical Research Letters, 2008, 35, .	4.0	161
61	Measurements of gasâ€phase inorganic and organic acids from biomass fires by negativeâ€ion protonâ€transfer chemicalâ€ionization mass spectrometry. Journal of Geophysical Research, 2010, 115, .	3.3	161
62	New constraints on terrestrial and oceanic sources of atmospheric methanol. Atmospheric Chemistry and Physics, 2008, 8, 6887-6905.	4.9	160
63	Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science, 2019, 365, 587-590.	12.6	159
64	Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US. Atmospheric Chemistry and Physics, 2015, 15, 411-429.	4.9	154
65	Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmospheric Chemistry and Physics, 2012, 12, 3273-3288.	4.9	153
66	Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions. Atmospheric Measurement Techniques, 2010, 3, 981-990.	3.1	152
67	Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England Air Quality Study 2002. Journal of Geophysical Research, 2004, 109, .	3.3	144
68	Effects of mixing on evolution of hydrocarbon ratios in the troposphere. Journal of Geophysical Research, 2007, 112, .	3.3	140
69	Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Atmospheric Chemistry and Physics, 2015, 15, 5773-5801.	4.9	139
70	Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. Atmospheric Chemistry and Physics, 2009, 9, 6191-6215.	4.9	138
71	Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area. Atmospheric Chemistry and Physics, 2016, 16, 7411-7433.	4.9	137
72	Emissions of volatile organic compounds from cut grass and clover are enhanced during the drying process. Geophysical Research Letters, 1999, 26, 811-814.	4.0	133

#	Article	IF	CITATIONS
73	Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Scientific Reports, 2017, 7, 4926.	3.3	133
74	Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area. Atmospheric Chemistry and Physics, 2010, 10, 2353-2375.	4.9	131
75	Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmospheric Chemistry and Physics, 2009, 9, 3027-3042.	4.9	128
76	Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere. Environmental Science & En	10.0	128
77	Nighttime removal of NOxin the summer marine boundary layer. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	127
78	Biomass-burning particle measurements: Characteristic composition and chemical processing. Journal of Geophysical Research, 2004, 109, .	3.3	127
79	Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution. Atmospheric Chemistry and Physics, 2011, 11, 2399-2421.	4.9	127
80	Vertically Resolved Measurements of Nighttime Radical Reservoirs in Los Angeles and Their Contribution to the Urban Radical Budget. Environmental Science & Environmental Science, 2012, 46, 10965-10973.	10.0	127
81	Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine. Journal of Geophysical Research, 2006, 111 , .	3.3	126
82	Modeling the Radical Chemistry in an Oxidation Flow Reactor: Radical Formation and Recycling, Sensitivities, and the OH Exposure Estimation Equation. Journal of Physical Chemistry A, 2015, 119, 4418-4432.	2.5	126
83	Organic nitrate aerosol formation via NO ₃ + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 13377-13392.	4.9	124
84	Formaldehyde production from isoprene oxidation acrossÂNO _{<i>x</i>} Âregimes. Atmospheric Chemistry and Physics, 2016, 16, 2597-2610.	4.9	124
85	Comparison of air pollutant emissions among mega-cities. Atmospheric Environment, 2009, 43, 6435-6441.	4.1	123
86	VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS. International Journal of Mass Spectrometry, 2011, 303, 6-14.	1.5	123
87	Atmospheric amines and ammonia measured with a chemical ionization mass spectrometer (CIMS). Atmospheric Chemistry and Physics, 2014, 14, 12181-12194.	4.9	121
88	Identification and Quantification of 4-Nitrocatechol Formed from OH and NO ₃ Radical-Initiated Reactions of Catechol in Air in the Presence of NO _{<i>x</i>} : Implications for Secondary Organic Aerosol Formation from Biomass Burning. Environmental Science & Eamp; Technology, 2018, 52, 1981-1989.	10.0	116
89	Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study. Atmospheric Chemistry and Physics, 2009, 9, 3425-3442.	4.9	114
90	Observational Insights into Aerosol Formation from Isoprene. Environmental Science & Emp; Technology, 2013, 47, 11403-11413.	10.0	113

#	Article	IF	CITATIONS
91	Concentrations and sources of organic carbon aerosols in the free troposphere over North America. Journal of Geophysical Research, 2006, 111 , .	3.3	111
92	Understanding the role of the ground surface in HONO vertical structure: High resolution vertical profiles during NACHTTâ€11. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,155.	3.3	111
93	Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	107
94	Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007. Atmospheric Chemistry and Physics, 2009, 9, 7623-7641.	4.9	105
95	Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 17769-17800.	4.9	105
96	Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer. Atmospheric Chemistry and Physics, 2010, 10, 10223-10236.	4.9	104
97	Disjunct eddy covariance measurements of oxygenated volatile organic compounds fluxes from an alfalfa field before and after cutting. Journal of Geophysical Research, 2002, 107, ACH 6-1.	3.3	103
98	Measurements of volatile organic compounds during the 2006 TexAQS/GoMACCS campaign: Industrial influences, regional characteristics, and diurnal dependencies of the OH reactivity. Journal of Geophysical Research, 2009, 114, .	3.3	103
99	Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX. Atmospheric Chemistry and Physics, 2018, 18, 2929-2948.	4.9	103
100	High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels. Atmospheric Chemistry and Physics, 2018, 18, 9263-9281.	4.9	102
101	Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using molecular properties. International Journal of Mass Spectrometry, 2017, 421, 71-94.	1.5	101
102	Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. Atmospheric Chemistry and Physics, 2013, 13, 8955-8971.	4.9	100
103	Effects of gas–wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds. Atmospheric Measurement Techniques, 2017, 10, 4687-4696.	3.1	100
104	The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010. Journal of Geophysical Research, 2011, 116, .	3.3	99
105	Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry. Geophysical Research Letters, 2014, 41, 8645-8651.	4.0	99
106	Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition. Atmospheric Chemistry and Physics, 2014, 14, 10977-10988.	4.9	98
107	Airborne and groundâ€based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin. Journal of Geophysical Research, 2012, 117, .	3.3	97
108	Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation. Atmospheric Chemistry and Physics, 2014, 14, 10439-10464.	4.9	97

#	Article	IF	Citations
109	Proton-Transfer Chemical-Ionization Mass Spectrometry Allows Real-Time Analysis of Volatile Organic Compounds Released from Cutting and Drying of Crops. Environmental Science & Echnology, 2000, 34, 2640-2648.	10.0	94
110	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025.	4.9	94
111	Disjunct eddy covariance technique for trace gas flux measurements. Geophysical Research Letters, 2001, 28, 3139-3142.	4.0	93
112	Source Identification of Reactive Hydrocarbons and Oxygenated VOCs in the Summertime in Beijing. Environmental Science & Envir	10.0	92
113	OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. Atmospheric Chemistry and Physics, 2019, 19, 14875-14899.	4.9	92
114	Contribution of human-related sources to indoor volatile organic compounds in a university classroom. Indoor Air, 2016, 26, 925-938.	4.3	91
115	Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures. Journal of Geophysical Research, 2004, 109,	3.3	89
116	Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. Journal of Geophysical Research, 2010, 115, .	3.3	89
117	Evidence of rapid production of organic acids in an urban air mass. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	89
118	Time-Resolved Measurements of Indoor Chemical Emissions, Deposition, and Reactions in a University Art Museum. Environmental Science & Environmental S	10.0	89
119	Reactive uptake of ozone by liquid organic compounds. Geophysical Research Letters, 1998, 25, 931-934.	4.0	88
120	The impact of monsoon outflow from India and Southeast Asia in the upper troposphere over the eastern Mediterranean. Atmospheric Chemistry and Physics, 2003, 3, 1589-1608.	4.9	86
121	Particle characteristics following cloud-modified transport from Asia to North America. Journal of Geophysical Research, 2004, 109, .	3.3	86
122	Influence of oil and gas emissions on summertime ozone in the Colorado Northern Front Range. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8712-8729.	3.3	86
123	Evaluations of NO _x and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006. Atmospheric Chemistry and Physics, 2011, 11, 11361-11386.	4.9	85
124	The Chemistry of Atmosphere-Forest Exchange (CAFE) Model – Part 2: Application to BEARPEX-2007 observations. Atmospheric Chemistry and Physics, 2011, 11, 1269-1294.	4.9	85
125	Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014. Atmospheric Chemistry and Physics, 2016, 16, 2139-2153.	4.9	85
126	Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmospheric Chemistry and Physics, 2003, 3, 739-745.	4.9	84

#	Article	IF	CITATIONS
127	Development of proton-transfer ion trap-mass spectrometry: on-line detection and identification of volatile organic compounds in air. Journal of the American Society for Mass Spectrometry, 2005, 16, 1316-1324.	2.8	84
128	Biomass burning and anthropogenic sources of CO over New England in the summer 2004. Journal of Geophysical Research, 2006, 111 , .	3.3	83
129	Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation. Atmospheric Chemistry and Physics, 2014, 14, 2383-2397.	4.9	83
130	Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA). Atmospheric Chemistry and Physics, 2016, 16, 11563-11580.	4.9	82
131	Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California. Atmospheric Chemistry and Physics, 2011, 11, 10219-10241.	4.9	81
132	Measurements of hydroxyl and hydroperoxy radicals during CalNex‣A: Model comparisons and radical budgets. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4211-4232.	3.3	81
133	Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the eastern North Pacific Ocean. Journal of Geophysical Research, 2004, 109, .	3.3	80
134	Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results. Atmospheric Measurement Techniques, 2011, 4, 2345-2358.	3.1	80
135	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NO _x and VOC Control as Mitigation Strategies. Geophysical Research Letters, 2019, 46, 4971-4979.	4.0	80
136	Air quality implications of the <i>Deepwater Horizon </i> oil spill. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20280-20285.	7.1	79
137	A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H ₃ 0 ⁺ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere. Atmospheric Measurement Techniques. 2016, 9, 2735-2752.	3.1	79
138	Emissions of nitrogenâ€containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers. Geophysical Research Letters, 2016, 43, 9903-9912.	4.0	79
139	Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer. Journal of Geophysical Research, 2007, 112, .	3.3	78
140	Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6641-6646.	7.1	78
141	VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China. Atmospheric Chemistry and Physics, 2015, 15, 11081-11096.	4.9	77
142	Daily Satellite Observations of Methane from Oil and Gas Production Regions in the United States. Scientific Reports, 2020, 10, 1379.	3.3	76
143	Nocturnal odd-oxygen budget and its implications for ozone loss in the lower troposphere. Geophysical Research Letters, 2006, 33, .	4.0	75
144	Vertical profiles in NO ₃ and N ₂ O ₅ measured from an aircraft: Results from the NOAA Pâ€3 and surface platforms during the New England Air Quality Study 2004. Journal of Geophysical Research, 2007, 112, .	3.3	75

#	Article	IF	Citations
145	Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NO _{<l>x</l>} . Atmospheric Chemistry and Physics, 2015, 15, 11257-11272.	4.9	75
146	The lifetime of nitrogen oxides in an isoprene-dominated forest. Atmospheric Chemistry and Physics, 2016, 16, 7623-7637.	4.9	75
147	Qualitative and quantitative analysis of atmospheric organosulfates in Centreville, Alabama. Atmospheric Chemistry and Physics, 2017, 17, 1343-1359.	4.9	75
148	Quantifying Methane and Ethane Emissions to the Atmosphere From Central and Western U.S. Oil and Natural Gas Production Regions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7725-7740.	3.3	74
149	Droplet activation properties of organic aerosols observed at an urban site during CalNex‣A. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2903-2917.	3.3	73
150	Diurnal Variability and Emission Pattern of Decamethylcyclopentasiloxane (D ₅) from the Application of Personal Care Products in Two North American Cities. Environmental Science & Emp; Technology, 2018, 52, 5610-5618.	10.0	72
151	Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. Environmental Science & Environmenta	10.0	72
152	Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 270-278.	3.9	70
153	Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. Atmospheric Chemistry and Physics, 2011, 11, 7561-7582.	4.9	70
154	An evaluation of realâ€time air quality forecasts and their urban emissions over eastern Texas during the summer of 2006 Second Texas Air Quality Study field study. Journal of Geophysical Research, 2009, 114, .	3.3	69
155	Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6783-6796.	3.3	69
156	Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft Observations. Environmental Science & Envi	10.0	68
157	A Library of Proton-Transfer Reactions of H ₃ O ⁺ lons Used for Trace Gas Detection. Journal of the American Society for Mass Spectrometry, 2019, 30, 1330-1335.	2.8	68
158	Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions. Atmospheric Chemistry and Physics, 2019, 19, 12797-12809.	4.9	67
159	Heterogeneous formation of nitryl chloride and its role as a nocturnal NO <i>_x</i> reservoir species during CalNexâ€LA 2010. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,638.	3.3	65
160	Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory. Environmental Science & Environmental	10.0	64
161	Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas–wall interactions. Atmospheric Measurement Techniques, 2019, 12, 3453-3461.	3.1	64
162	Measurement of peroxycarboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment. Journal of Geophysical Research, 2004, 109, .	3.3	63

#	Article	IF	Citations
163	Budgets for nocturnal VOC oxidation by nitrate radicals aloft during the 2006 Texas Air Quality Study. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	63
164	Effects of temperature-dependent NO _{_{emissions on continental ozone production. Atmospheric Chemistry and Physics, 2018, 18, 2601-2614.}}	4.9	62
165	Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bulletin of the American Meteorological Society, 2018, 99, 547-567.	3.3	62
166	Chemical characteristics assigned to trajectory clusters during the MINOS campaign. Atmospheric Chemistry and Physics, 2003, 3, 459-468.	4.9	61
167	Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds. Atmospheric Measurement Techniques, 2010, 3, 683-691.	3.1	61
168	Online Volatile Organic Compound Measurements Using a Newly Developed Proton-Transfer Ion-Trap Mass Spectrometry Instrument during New England Air Quality StudyIntercontinental Transport and Chemical Transformation 2004:Â Performance, Intercomparison, and Compound Identification. Environmental Science & December 1987, 2005, 39, 5390-5397.	10.0	60
169	Empirical correlations between black carbon aerosol and carbon monoxide in the lower and middle troposphere. Geophysical Research Letters, 2008, 35, .	4.0	60
170	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.	4.9	60
171	Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley. Atmospheric Chemistry and Physics, 2014, 14, 4955-4978.	4.9	59
172	Speciation of OH reactivity above the canopy of an isoprene-dominated forest. Atmospheric Chemistry and Physics, 2016, 16, 9349-9359.	4.9	59
173	Overview of the trace gas measurements on board the Citation aircraft during the intensive field phase of INDOEX. Journal of Geophysical Research, 2001, 106, 28453-28467.	3.3	58
174	Senescing grass crops as regional sources of reactive volatile organic compounds. Journal of Geophysical Research, 2005, 110 , .	3.3	58
175	Aerosol and gas reâ€distribution by shallow cumulus clouds: An investigation using airborne measurements. Journal of Geophysical Research, 2012, 117, .	3.3	58
176	Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.	3.1	58
177	Airborne Measurements of Ethene from Industrial Sources Using Laser Photo-Acoustic Spectroscopy. Environmental Science & Envir	10.0	57
178	Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. Atmospheric Chemistry and Physics, 2015, 15, 1975-1993.	4.9	57
179	Formaldehyde over the eastern Mediterranean during MINOS: Comparison of airborne in-situ measurements with 3D-model results. Atmospheric Chemistry and Physics, 2003, 3, 851-861.	4.9	56
180	Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6271-6289.	3.3	56

#	Article	IF	Citations
181	Transition from high- to low-NOx control of night-time oxidation in the southeastern US. Nature Geoscience, 2017, 10, 490-495.	12.9	56
182	Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation. Atmospheric Chemistry and Physics, 2015, 15, 7571-7583.	4.9	55
183	Observational constraints on the global atmospheric budget of ethanol. Atmospheric Chemistry and Physics, 2010, 10, 5361-5370.	4.9	54
184	Evolution of aerosol properties impacting visibility and direct climate forcing in an ammoniaâ€rich urban environment. Journal of Geophysical Research, 2012, 117, .	3.3	54
185	The sea breeze/land breeze circulation in Los Angeles and its influence on nitryl chloride production in this region. Journal of Geophysical Research, 2012, 117, .	3.3	54
186	Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekdayâ€weekend effect. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5018-5028.	3.3	54
187	Testing Atmospheric Oxidation in an Alabama Forest. Journals of the Atmospheric Sciences, 2016, 73, 4699-4710.	1.7	54
188	An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere. Atmospheric Measurement Techniques, 2017, 10, 291-313.	3.1	54
189	No evidence for acid-catalyzed secondary organic aerosol formation in power plant plumes over metropolitan Atlanta, Georgia. Geophysical Research Letters, 2007, 34, .	4.0	53
190	On the gasâ€particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk waterâ€soluble organic carbon. Journal of Geophysical Research, 2012, 117, .	3.3	53
191	Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources. Atmospheric Chemistry and Physics, 2017, 17, 4945-4956.	4.9	53
192	Satellite isoprene retrievals constrain emissions and atmospheric oxidation. Nature, 2020, 585, 225-233.	27.8	53
193	Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere. Atmospheric Chemistry and Physics, 2009, 9, 2061-2074.	4.9	52
194	Biological cycling of volatile organic carbon by phytoplankton and bacterioplankton. Limnology and Oceanography, 2017, 62, 2650-2661.	3.1	52
195	Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX. Atmospheric Chemistry and Physics, 2013, 13, 11317-11337.	4.9	51
196	Fine-scale simulation of ammonium and nitrate over the South Coast Air Basin and San Joaquin Valley of California during CalNex-2010. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3600-3614.	3.3	51
197	In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC ⁴ RS: observations of a modest aerosol enhancement aloft. Atmospheric Chemistry and Physics, 2015, 15, 7085-7102.	4.9	50
198	Enhanced formation of isopreneâ€derived organic aerosol in sulfurâ€rich power plant plumes during Southeast Nexus. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,137.	3.3	50

#	Article	IF	Citations
199	Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States – results from NEAQS. Atmospheric Chemistry and Physics, 2007, 7, 3231-3247.	4.9	49
200	Measurements of PANs during the New England Air Quality Study 2002. Journal of Geophysical Research, 2007, 112 , .	3.3	49
201	Evaluation of the role of heterogeneous oxidation of alkenes in the detection of atmospheric acetaldehyde. Atmospheric Environment, 2004, 38, 6017-6028.	4.1	48
202	Sources of particulate matter in the northeastern United States in summer: 2. Evolution of chemical and microphysical properties. Journal of Geophysical Research, 2008, 113, .	3.3	48
203	Lagrangian analysis of low altitude anthropogenic plume processing across the North Atlantic. Atmospheric Chemistry and Physics, 2008, 8, 7737-7754.	4.9	48
204	Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield. Atmospheric Chemistry and Physics, 2015, 15, 5243-5258.	4.9	48
205	Evaluation of NO ⁺ reagent ion chemistry for online measurements of atmospheric volatile organic compounds. Atmospheric Measurement Techniques, 2016, 9, 2909-2925.	3.1	48
206	Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9849-9861.	3.3	48
207	On the gasâ€particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 2. Gas and particle phase formic acid. Journal of Geophysical Research, 2012, 117,	3.3	47
208	Secondary organic aerosol (SOA) yields from NO ₃ radical + isoprene based on nighttime aircraft power plant plume transects. Atmospheric Chemistry and Physics, 2018, 18, 11663-11682.	4.9	47
209	Mass Spectral Analysis of Organic Aerosol Formed Downwind of the Deepwater Horizon Oil Spill: Field Studies and Laboratory Confirmations. Environmental Science & Environmental Science, 2012, 46, 8025-8034.	10.0	45
210	Effects of gas–wall interactions on measurements of semivolatile compounds and small polar molecules. Atmospheric Measurement Techniques, 2019, 12, 3137-3149.	3.1	45
211	The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study. Atmospheric Chemistry and Physics, 2020, 20, 8807-8826.	4.9	45
212	Characterization of NO \langle sub $\rangle\langle$ i \rangle x \langle li $\rangle\langle$ lsub \rangle , SO \langle sub \rangle 2 \langle lsub \rangle , ethene, and propene from industrial emission sources in Houston, Texas. Journal of Geophysical Research, 2010, 115, .	3.3	44
213	Emissions of C ₆ –C ₈ aromatic compounds in the United States: Constraints from tall tower and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 826-842.	3.3	44
214	Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H ₃ O ⁺ CIMS (PTR-ToF-MS). Atmospheric Measurement Techniques, 2017, 10, 2941-2968.	3.1	44
215	Chemistry of Volatile Organic Compounds in the Los Angeles Basin: Formation of Oxygenated Compounds and Determination of Emission Ratios. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2298-2319.	3.3	43
216	Mixing between a stratospheric intrusion and a biomass burning plume. Atmospheric Chemistry and Physics, 2007, 7, 4229-4235.	4.9	42

#	Article	IF	Citations
217	Interpretation of volatile organic compound measurements by proton-transfer-reaction mass spectrometry over the deepwater horizon oil spill. International Journal of Mass Spectrometry, 2014, 358, 43-48.	1.5	42
218	Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
219	Emissions and photochemistry of oxygenated VOCs in urban plumes in the Northeastern United States. Atmospheric Chemistry and Physics, 2011, 11, 7081-7096.	4.9	41
220	Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007. Atmospheric Chemistry and Physics, 2011, 11, 8883-8897.	4.9	41
221	Increasing atmospheric burden of ethanol in the United States. Geophysical Research Letters, 2012, 39, .	4.0	41
222	Biomass-burning-derived particles from a wide variety of fuels – Part 2: Effects of photochemical aging on particle optical and chemical properties. Atmospheric Chemistry and Physics, 2020, 20, 8511-8532.	4.9	41
223	The role of benzene photolysis in Titan haze formation. Icarus, 2014, 233, 233-241.	2.5	40
224	Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2006, 6, 5649-5666.	4.9	39
225	Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions. Atmospheric Chemistry and Physics, 2012, 12, 5897-5912.	4.9	39
226	Inter-comparison between airborne measurements of methanol, acetonitrile and acetone using two differently configured PTR-MS instruments. International Journal of Mass Spectrometry, 2004, 239, 129-137.	1.5	38
227	Observations of ozone transport from the free troposphere to the Los Angeles basin. Journal of Geophysical Research, 2012, 117, .	3.3	38
228	Laboratory Studies on Secondary Organic Aerosol Formation from Crude Oil Vapors. Environmental Science & Environmental	10.0	38
229	Biosphere-atmosphere exchange of volatile organic compounds over C4ÂbiofuelÂcrops. Atmospheric Environment, 2013, 66, 161-168.	4.1	37
230	Isoprene suppression of new particle formation: Potential mechanisms and implications. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,621.	3.3	37
231	Chemistry of Volatile Organic Compounds in the Los Angeles basin: Nighttime Removal of Alkenes and Determination of Emission Ratios. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,843.	3.3	37
232	Laboratory investigations of Titan haze formation: In situ measurement of gas and particle composition. Icarus, 2018, 301, 136-151.	2.5	37
233	Budgets of Organic Carbon Composition and Oxidation in Indoor Air. Environmental Science & Eamp; Technology, 2019, 53, 13053-13063.	10.0	37
234	Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor. Atmospheric Chemistry and Physics, 2014, 14, 2555-2570.	4.9	36

#	Article	IF	CITATIONS
235	Southeast Atmosphere Studies: learning from model-observation syntheses. Atmospheric Chemistry and Physics, 2018, 18, 2615-2651.	4.9	36
236	Automated single-ion peak fitting as an efficient approach for analyzing complex chromatographic data. Journal of Chromatography A, 2017, 1529, 81-92.	3.7	35
237	Analysis of the isoprene chemistry observed during the New England Air Quality Study (NEAQS) 2002 intensive experiment. Journal of Geophysical Research, 2006, 111, .	3.3	34
238	Measurement of Aerosol Organic Compounds Using a Novel Collection/Thermal-Desorption PTR-ITMS Instrument. Aerosol Science and Technology, 2009, 43, 486-501.	3.1	34
239	Characteristics of black carbon aerosol from a surface oil burn during the Deepwater Horizon oil spill. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	34
240	WRF-Chem simulation of NOx and O3 in the L.A. basin during CalNex-2010. Atmospheric Environment, 2013, 81, 421-432.	4.1	34
241	New insights into atmospheric sources and sinks of isocyanic acid, HNCO, from recent urban and regional observations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1060-1072.	3.3	34
242	Low temperatures enhance organic nitrate formation: evidence from observations in the 2012 Uintah Basin Winter Ozone Study. Atmospheric Chemistry and Physics, 2014, 14, 12441-12454.	4.9	34
243	Resonant Auger spectra of the 2p-1nl states of argon. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 2127-2141.	1.5	33
244	Charge-transfer rate constants for N2+($\hat{l}\frac{1}{2}$ = 0 \hat{a} \in "4) with Ar at thermal energies. Chemical Physics Letters, 1996, 256, 305-311.	2.6	33
245	Radicals in the marine boundary layer during NEAQS 2004: a model study of day-time and night-time sources and sinks. Atmospheric Chemistry and Physics, 2009, 9, 3075-3093.	4.9	33
246	Peroxynitric acid (HO _{NO₂) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 8101-8114.}	4.9	33
247	Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event. Atmospheric Chemistry and Physics, 2015, 15, 5727-5741.	4.9	33
248	Impact of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from SENEX. Atmospheric Environment, 2017, 164, 325-336.	4.1	33
249	Model analysis of trace gas measurements and pollution impact during INDOEX. Journal of Geophysical Research, 2001, 106, 28469-28480.	3.3	32
250	On the relationship between acetone and carbon monoxide in different air masses. Atmospheric Chemistry and Physics, 2003, 3, 1709-1723.	4.9	32
251	A study of organic nitrates formation in an urban plume using a Master Chemical Mechanism. Atmospheric Environment, 2008, 42, 5771-5786.	4.1	32
252	Continued emissions of carbon tetrachloride from the United States nearly two decades after its phaseout for dispersive uses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2880-2885.	7.1	32

#	Article	IF	Citations
253	Investigating diesel engines as an atmospheric source of isocyanic acid in urban areas. Atmospheric Chemistry and Physics, 2017, 17, 8959-8970.	4.9	32
254	On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 2019, 19, 9097-9123.	4.9	32
255	Quantification and source characterization of volatile organic compounds from exercising and application of chlorineâ€based cleaning products in a university athletic center. Indoor Air, 2021, 31, 1323-1339.	4.3	32
256	Nitrogen Oxide Emissions from U.S. Oil and Gas Production: Recent Trends and Source Attribution. Geophysical Research Letters, 2020, 47, e2019GL085866.	4.0	31
257	An in situ gas chromatograph with automatic detector switching between PTR- and EI-TOF-MS: isomer-resolved measurements of indoor air. Atmospheric Measurement Techniques, 2021, 14, 133-152.	3.1	31
258	Volatile organic compound emissions from switchgrass cultivars used as biofuel crops. Atmospheric Environment, 2011, 45, 3333-3337.	4.1	30
259	Chemistryâ€turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere. Geophysical Research Letters, 2015, 42, 10,894.	4.0	30
260	Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation. Atmospheric Chemistry and Physics, 2017, 17, 13417-13438.	4.9	30
261	PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013. Atmospheric Measurement Techniques, 2015, 8, 411-420.	3.1	29
262	Methyl chloride and other chlorocarbons in polluted air during INDOEX. Journal of Geophysical Research, 2002, 107, INX2 14-1.	3.3	28
263	Variation among different genotypes of hybrid poplar with regard to leaf volatile organic compound emissions. Ecological Applications, 2012, 22, 1865-1875.	3.8	28
264	Primary emissions of glyoxal and methylglyoxal from laboratory measurements of open biomass burning. Atmospheric Chemistry and Physics, 2018, 18, 15451-15470.	4.9	28
265	Measurements and modeling of absorptive partitioning of volatile organic compounds to painted surfaces. Indoor Air, 2020, 30, 745-756.	4.3	27
266	Measurements of hydrogen sulfide (H ₂ S) using PTR-MS: calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas production region. Atmospheric Measurement Techniques, 2014, 7, 3597-3610.	3.1	26
267	Nocturnal loss of NO <i></i> during the 2010 CalNexâ€LA study in the Los Angeles Basin. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,004.	3.3	26
268	GLOVOCS - Master compound assignment guide for proton transfer reaction mass spectrometry users. Atmospheric Environment, 2021, 244, 117929.	4.1	26
269	Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus Shale. Elementa, 2017, 5, .	3.2	25
270	Insights into the significant increase in ozone during COVID-19 in a typical urban city of China. Atmospheric Chemistry and Physics, 2022, 22, 4853-4866.	4.9	25

#	Article	IF	Citations
271	Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric Chemistry and Physics, 2016, 16, 573-583.	4.9	24
272	Mobilities of Aromatic Ions Drifting in Helium. The Journal of Physical Chemistry, 1996, 100, 14908-14913.	2.9	23
273	Two additional advantages of proton-transfer ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 133-134.	1.5	23
274	Quantifying Methane and Ozone Precursor Emissions from Oil and Gas Production Regions across the Contiguous US. Environmental Science & Environmental	10.0	23
275	Nitrous acid formation in a snow-free wintertime polluted rural area. Atmospheric Chemistry and Physics, 2018, 18, 1977-1996.	4.9	22
276	Intercomparison of OH and OH reactivity measurements in a high isoprene and low NO environment during the Southern Oxidant and Aerosol Study (SOAS). Atmospheric Environment, 2018, 174, 227-236.	4.1	22
277	Threshold effects in Auger spectra of photoionized argon. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 2007-2015.	1.5	21
278	Mobility and formation kinetics of NH4+(NH3)n cluster ions (n=0–3) in helium and helium/ammonia mixtures. Journal of Chemical Physics, 1997, 106, 530-538.	3.0	21
279	Autoxidation of Limonene Emitted in a University Art Museum. Environmental Science and Technology Letters, 2019, 6, 520-524.	8.7	21
280	Estimation of Secondary Organic Aerosol Formation During a Photochemical Smog Episode in Shanghai, China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032033.	3.3	21
281	Revisiting Acetonitrile as Tracer of Biomass Burning in Anthropogenicâ€Influenced Environments. Geophysical Research Letters, 2021, 48, e2020GL092322.	4.0	21
282	The mobilities of ions and cluster ions drifting in polar gases. Journal of Chemical Physics, 1997, 106, 5937-5942.	3.0	20
283	Analyses of firn gas samples from Dronning Maud Land, Antarctica: Study of nonmethane hydrocarbons and methyl chloride. Journal of Geophysical Research, 2004, 109, .	3.3	20
284	Products and Secondary Organic Aerosol Yields from the OH and NO ₃ Radical-Initiated Oxidation of Resorcinol. ACS Earth and Space Chemistry, 2019, 3, 1248-1259.	2.7	20
285	Cross sections and coherences for energy pooling reactions between two Na*(3p) atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 2841-2861.	1.5	19
286	Coherence between the photoionization of different inner-shell vacancy states of argon. Physical Review Letters, 1993, 71, 2875-2878.	7.8	19
287	Development of a Fuel-Based Oil and Gas Inventory of Nitrogen Oxides Emissions. Environmental Science & Emissions and Science & Environmental Science & Emissions & Environmental Science & Emissions & Environmental & Emissions & Em	10.0	19
288	Assessment of Updated Fuelâ€Based Emissions Inventories Over the Contiguous United States Using TROPOMI NO ₂ Retrievals. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035484.	3.3	18

#	Article	IF	Citations
289	Vibrational energy dependence of the reaction N2+(ν) +H2 →N2H+ +H at thermal energies. Chemical Physics Letters, 1995, 240, 362-368.	2.6	17
290	The mobilities of NO+(CH3CN)n cluster ions (n=0â€"3) drifting in helium and in heliumâ€"acetonitrile mixtures. Journal of Chemical Physics, 1996, 105, 10398-10409.	3.0	17
291	Measured and calculated mobilities of cluster ions drifting in helium and in nitrogen. International Journal of Mass Spectrometry and Ion Processes, 1997, 167-168, 281-289.	1.8	17
292	Regional variation of the dimethyl sulfide oxidation mechanism in the summertime marine boundary layer in the Gulf of Maine. Journal of Geophysical Research, 2009, 114, .	3.3	17
293	Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphereâ€toâ€troposphere transport and biomass burning: Simultaneous groundâ€based lidar and airborne measurements. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1293-1311.	3.3	17
294	Airborne measurements of the atmospheric emissions from a fuel ethanol refinery. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4385-4397.	3.3	16
295	Vibrational enhancement of the charge transfer rate constant of N+2(v=0–4) with Kr at thermal energies. Journal of Chemical Physics, 1996, 105, 5455-5466.	3.0	15
296	Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1777-1803.	3.3	15
297	Contrasting Reactive Organic Carbon Observations in the Southeast United States (SOAS) and Southern California (CalNex). Environmental Science & Envir	10.0	15
298	Quantifying NO _{<i>x</i>} Emissions from U.S. Oil and Gas Production Regions Using TROPOMI NO ₂ . ACS Earth and Space Chemistry, 2022, 6, 403-414.	2.7	15
299	Direct Measurement of the Rate Coefficient for the CH2C(CH3)C(O)O2+ NO Reaction Using Chemical lonization Mass Spectrometry. Journal of Physical Chemistry A, 1997, 101, 8662-8667.	2.5	14
300	Particulate organic nitrates observed in an oil and natural gas production region during wintertime. Atmospheric Chemistry and Physics, 2015, 15, 9313-9325.	4.9	14
301	Coupled Air Quality and Boundary-Layer Meteorology in Western U.S. Basins during Winter: Design and Rationale for a Comprehensive Study. Bulletin of the American Meteorological Society, 2021, 102, E2012-E2033.	3.3	14
302	Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006. Atmospheric Chemistry and Physics, 2011, 11, 2471-2485.	4.9	13
303	Observation of coherence between the photoionization of different inner-shell vacancy states of argon and krypton. Physical Review A, 1994, 50, 4013-4024.	2.5	12
304	Threshold effects in the Auger decay of argon photoexcited below the 2p3/2threshold. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 1761-1775.	1.5	12
305	Cloud droplets aid the production of formic acid in the atmosphere. Nature, 2021, 593, 198-199.	27.8	12
306	Drivers of cloud droplet number variability in the summertime in the southeastern United States. Atmospheric Chemistry and Physics, 2020, 20, 12163-12176.	4.9	12

#	Article	IF	Citations
307	Measurements of Volatile Organic Compounds During the COVIDâ€19 Lockdown in Changzhou, China. Geophysical Research Letters, 2021, 48, e2021GL095560.	4.0	12
308	Carbonyl sulfide as an inverse tracer for biogenic organic carbon in gas and aerosol phases. Geophysical Research Letters, 2009, 36, .	4.0	11
309	Modelled and measured concentrations of peroxy radicals and nitrate radical in the U.S. Gulf Coast region during TexAQS 2006. Journal of Atmospheric Chemistry, 2011, 68, 331-362.	3.2	11
310	Nextâ€Generation Isoprene Measurements From Space: Detecting Daily Variability at High Resolution. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	11
311	Importance of biogenic volatile organic compounds to acyl peroxy nitrates (APN) production in the southeastern US during SOAS 2013. Atmospheric Chemistry and Physics, 2019, 19, 1867-1880.	4.9	10
312	Emission ratios of anthropogenic VOC in northern mid-latitude megacities: observations vs. emission inventories in Los Angeles and Paris Journal of Geophysical Research, 0, , .	3.3	10
313	Polarization dependence of energy pooling reactions between two Na* (3p) atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, L553-L557.	1.5	9
314	Hydrocarbon Removal in Power Plant Plumes Shows Nitrogen Oxide Dependence of Hydroxyl Radicals. Geophysical Research Letters, 2019, 46, 7752-7760.	4.0	9
315	Inter-comparison of Laser Photoacoustic Spectroscopy and Gas Chromatography Techniques for Measurements of Ethene in the Atmosphere. Environmental Science & Environmental Sci	10.0	8
316	Simulating the Weekly Cycle of NO x â€VOCâ€HO x â€O 3 Photochemical System in the South Coast of California During CalNexâ€2010 Campaign. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3532-3555.	3.3	8
317	A portable and inexpensive method for quantifying ambient intermediate volatility organic compounds. Atmospheric Environment, 2014, 94, 126-133.	4.1	7
318	Sources of Gas-Phase Species in an Art Museum from Comprehensive Real-Time Measurements. ACS Earth and Space Chemistry, 2021, 5, 2252-2267.	2.7	7
319	Correction for Roberts et al., Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17234-17234.	7.1	6
320	Influence of Long-Range Transport of Siberian Biomass Burning at the Mt. Bachelor Observatory during the Spring of 2015. Aerosol and Air Quality Research, 2017, 17, 2751-2761.	2.1	6
321	Resonances in the photoionization of argon and krypton in the region of the inner-shell excited states. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 3915-3926.	1.5	5
322	Measurements of Total OH Reactivity During CalNex‣A. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032988.	3.3	5
323	Teaching Instrumental Analysis during the Pandemic: Application of Handheld CO ₂ Monitors to Explore COVID-19 Transmission Risks. Journal of Chemical Education, 2022, 99, 1794-1801.	2.3	5
324	Seasonal cycles of nonmethane hydrocarbons and methyl chloride, as derived from firn air from Dronning Maud Land, Antarctica. Journal of Geophysical Research, 2004, 109, .	3.3	4

#	Article	IF	CITATIONS
325	Impact of high-resolution a priori profiles on satellite-based formaldehyde retrievals. Atmospheric Chemistry and Physics, 2018, 18, 7639-7655.	4.9	2
326	Corrigendum to "In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC&Itsup>4&It/sup>RS: observations of a modest aerosol enhancement aloft" published in Atmos. Chem. Phys., 15, 7085–7102, 2015. Atmospheric Chemistry and Physics, 2015, 15, 8455-8455.	4.9	1
327	Limited impact of sulfate-driven chemistry on black carbon aerosol aging in power plant plumes. AIMS Environmental Science, 2018, 5, 195-215.	1.4	1
328	Hydrogen chloride (HCl) at ground sites during CalNex 2010 and insight into its thermodynamic properties. Journal of Geophysical Research D: Atmospheres, 2022, 127, 1-16.	3.3	1
329	It's a Gas in the Grass. Science News, 1999, 155, 403.	0.1	0
330	Improved time to publication in Journal of Geophysical Research-Atmospheres. Eos, 2012, 93, 253-253.	0.1	0
331	Editorial: Review Articles for ⟨i⟩Journal of Geophysical Research – Atmospheres⟨ i⟩ are Welcome. Journal of Geophysical Research D: Atmospheres, 2013, 118, vi.	3.3	0
332	Coherence between the excitation of states with different energies. European Physical Journal Special Topics, 1993, 03, C6-207-C6-216.	0.2	0
333	In the Footsteps of My Countrymen: Atmospheric Chemistry in New England, Los Angeles, and the Southeast United States. Perspectives of Earth and Space Scientists, 2021, 2, .	0.3	0