
Joerg A Priess

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2578963/publications.pdf Version: 2024-02-01

LOEDC & DDIESS

#	Article	IF	CITATIONS
1	Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3388-3393.	7.1	577
2	Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosystem Services, 2017, 28, 264-272.	5.4	306
3	When we cannot have it all: Ecosystem services trade-offs in the context of spatial planning. Ecosystem Services, 2018, 29, 566-578.	5.4	231
4	Assessment of soil nutrient depletion and its spatial variability on smallholders' mixed farming systems in Ethiopia using partial versus full nutrient balances. Agriculture, Ecosystems and Environment, 2005, 108, 1-16.	5.3	214
5	LINKING DEFORESTATION SCENARIOS TO POLLINATION SERVICES AND ECONOMIC RETURNS IN COFFEE AGROFORESTRY SYSTEMS. , 2007, 17, 407-417.		153
6	Simulation of global crop production with the ecosystem model DayCent. Ecological Modelling, 2007, 209, 203-219.	2.5	146
7	An integrated approach to modelling land-use change on continental and global scales. Environmental Modelling and Software, 2011, 26, 1041-1051.	4.5	143
8	Institutional challenges in putting ecosystem service knowledge in practice. Ecosystem Services, 2018, 29, 579-598.	5.4	132
9	The means determine the end – Pursuing integrated valuation in practice. Ecosystem Services, 2018, 29, 515-528.	5.4	128
10	The Need for Scale Sensitive Approaches in Spatially Explicit Land Use Change Modeling. Environmental Modeling and Assessment, 2001, 6, 111-121.	2.2	96
11	Stakeholders' perspectives on the operationalisation of the ecosystem service concept: Results from 27 case studies. Ecosystem Services, 2018, 29, 552-565.	5.4	94
12	Integrating methods for ecosystem service assessment: Experiences from real world situations. Ecosystem Services, 2018, 29, 499-514.	5.4	80
13	Practical application of spatial ecosystem service models to aid decision support. Ecosystem Services, 2018, 29, 465-480.	5.4	72
14	Modeling the land requirements and potential productivity of sugarcane and jatropha in Brazil and India using the LPJmL dynamic global vegetation model. Biomass and Bioenergy, 2009, 33, 1087-1095.	5.7	69
15	Smallholders' Soil Fertility Management in the Central Highlands of Ethiopia: Implications for Nutrient Stocks, Balances and Sustainability of Agroecosystems. Nutrient Cycling in Agroecosystems, 2006, 75, 135-146.	2.2	61
16	The consequences of land-use change and water demands in Central Mongolia. Land Use Policy, 2011, 28, 4-10.	5.6	61
17	The Promise of the Ecosystem Services Concept for Planning and Decision-Making. Gaia, 2013, 22, 232-236.	0.7	60
18	(Dis) integrated valuation – Assessing the information gaps in ecosystem service appraisals for governance support. Ecosystem Services, 2018, 29, 529-541.	5.4	59

JOERG A PRIESS

#	Article	IF	CITATIONS
19	Nutrient flows and balances at the field and farm scale: Exploring effects of land-use strategies and access to resources. Agricultural Systems, 2007, 94, 459-470.	6.1	55
20	Impacts of Climate Change and the End of Deforestation on Land Use in the Brazilian Legal Amazon. Earth Interactions, 2011, 15, 1-29.	1.5	52
21	How do the green components of urban green infrastructure influence the use of ecosystem services? Examples from Leipzig, Germany. Landscape Ecology, 2020, 35, 1127-1142.	4.2	51
22	Evaluation of an integrated land use change model including a scenario analysis of land use change for continental Africa. Environmental Modelling and Software, 2011, 26, 1017-1027.	4.5	48
23	Mapping ecosystem services on brownfields in Leipzig, Germany. Ecosystem Services, 2018, 30, 73-85.	5.4	45
24	Litter and fine-root production in three types of tropical premontane rain forest in SE Venezuela. Plant Ecology, 1999, 143, 171-187.	1.6	44
25	Soil–vegetation relationship in base-deficient premontane moist forest–savanna mosaics of the Venezuelan Guayana. Geoderma, 2001, 104, 95-113.	5.1	43
26	Assessment of interactions between land use change and carbon and nutrient fluxes in Ecuador. Agriculture, Ecosystems and Environment, 2001, 85, 269-279.	5.3	42
27	Adenylates as an estimate of microbial biomass C in different soil groups. Soil Biology and Biochemistry, 2003, 35, 1485-1491.	8.8	42
28	Integrative Scenario Development. Ecology and Society, 2014, 19, .	2.3	41
29	Indicators of bioenergy-related certification schemes – An analysis of the quality and comprehensiveness for assessing local/regional environmental impacts. Biomass and Bioenergy, 2014, 65, 151-169.	5.7	38
30	Land-Use Change Modelling in the Upper Blue Nile Basin. Environments - MDPI, 2016, 3, 21.	3.3	36
31	Human migration, climate variability, and land degradation: hotspots of socio-ecological pressure in Ethiopia. Regional Environmental Change, 2017, 17, 1479-1492.	2.9	36
32	Effects of land-use changes on evapotranspiration of tropical rain forest margin area in Central Sulawesi (Indonesia): Modelling study with a regional SVAT model. Ecological Modelling, 2008, 212, 131-137.	2.5	34
33	Microbial properties and soil respiration in submontane forests of Venezuelian Guyana: characteristics and response to fertilizer treatments. Soil Biology and Biochemistry, 2001, 33, 503-509.	8.8	33
34	Impacts of agricultural land-use dynamics on erosion risks and options for land and water management in Northern Mongolia. Environmental Earth Sciences, 2015, 73, 697-708.	2.7	31
35	A generic framework for land-use modelling. Environmental Modelling and Software, 2011, 26, 1052-1055.	4.5	29
36	The effect of subarctic conditions on water resources: initial results and limitations of the SWAT model applied to the Kharaa River Basin in Northern Mongolia. Environmental Earth Sciences, 2015, 73, 581-592.	2.7	28

JOERG A PRIESS

#	Article	IF	CITATIONS
37	Simulating the impact of biofuel development on country-wide land-use change in India. Biomass and Bioenergy, 2011, 35, 2401-2410.	5.7	27
38	Reviewing drivers of ecosystem change as input for environmental and ecosystem services modelling. Sustainability of Water Quality and Ecology, 2015, 5, 9-30.	2.0	26
39	Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions. PLoS ONE, 2016, 11, e0153862.	2.5	24
40	Comparing Bioenergy Production Sites in the Southeastern US Regarding Ecosystem Service Supply and Demand. PLoS ONE, 2015, 10, e0116336.	2.5	22
41	Different ecosystem services, same (dis)satisfaction with compensation: A critical comparison between farmers' perception in Scotland and Brazil. Ecosystem Services, 2019, 35, 164-172.	5.4	18
42	Keep it real: selecting realistic sets of urban green space indicators. Environmental Research Letters, 2020, 15, 095001.	5.2	18
43	Ecosystem Service Use and the Motivations for Use in Central Parks in Three European Cities. Land, 2021, 10, 154.	2.9	17
44	New EU-scale environmental scenarios until 2050 – Scenario process and initial scenario applications. Ecosystem Services, 2018, 29, 542-551.	5.4	16
45	Combining policy analyses, exploratory scenarios, and integrated modelling to assess land use policy options. Environmental Science and Policy, 2019, 94, 202-210.	4.9	14
46	Modelling regional scale biofuel scenarios – a case study for India. GCB Bioenergy, 2012, 4, 176-192.	5.6	13
47	Operationalizing payments for ecosystem services in Brazil's sugarcane belt: How do stakeholder opinions match with successful cases in Latin America?. Ecosystem Services, 2016, 22, 128-138.	5.4	13
48	Bringing the sharing-sparing debate down to the ground—Lessons learnt for participatory scenario development. Land Use Policy, 2020, 91, 104262.	5.6	12
49	Zig-zagging into the future: the role of biofuels in India. Biofuels, Bioproducts and Biorefining, 2011, 5, 18-27.	3.7	9
50	Biofuel Options for India—Perspectives on Land Availability, Land Management and Land-Use Change. Journal of Biobased Materials and Bioenergy, 2010, 4, 243-255.	0.3	7
51	Chapter Four Searching for the Future of Land: Scenarios from the Local to Global Scale. Developments in Integrated Environmental Assessment, 2008, 2, 67-103.	0.0	6
52	Making environmental assessments of biomass production systems comparable worldwide. Environmental Research Letters, 2016, 11, 034005.	5.2	5
53	"The most likely future isn't": Landnutzungsszenarien für Mitteldeutschland. Raumforschung Und Raumordnung Spatial Research and Planning, 2013, 71, .	2.0	3