
Lynn M Mcmullen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2577977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Continuing Story of Class IIa Bacteriocins. Microbiology and Molecular Biology Reviews, 2006, 70, 564-582.	6.6	586
2	Isolation and Characterization of Carnocyclin A, a Novel Circular Bacteriocin Produced by <i>Carnobacterium maltaromaticum</i> UAL307. Applied and Environmental Microbiology, 2008, 74, 4756-4763.	3.1	134
3	Occurrence of Pathogens in Raw and Ready-to-Eat Meat and Poultry Products Collected from the Retail Marketplace in Edmonton, Alberta, Canada. Journal of Food Protection, 2006, 69, 2176-2182.	1.7	119
4	Genetic determinants of heat resistance in Escherichia coli. Frontiers in Microbiology, 2015, 6, 932.	3.5	105
5	Origin of Contamination and Genetic Diversity of Escherichia coli in Beef Cattle. Applied and Environmental Microbiology, 2003, 69, 2794-2799.	3.1	95
6	Inactivation of Nisin by Glutathione in Fresh Meat. Journal of Food Science, 1999, 64, 759-762.	3.1	86
7	Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions. Frontiers in Microbiology, 2015, 6, 295.	3.5	73
8	Potential for Use of Bacteriocin-Producing Lactic Acid Bacteria in the Preservation of Meats. Journal of Food Protection, 1996, 59, 64-71.	1.7	67
9	Characterization of an extremely heat-resistant Escherichia coli obtained from a beef processing facility. Journal of Applied Microbiology, 2011, 110, 840-849.	3.1	67
10	Genetic Characterization and Heterologous Expression of Brochocin-C, an Antibotulinal, Two-Peptide Bacteriocin Produced by <i>Brochothrix campestris</i> ATCC 43754. Applied and Environmental Microbiology, 1998, 64, 4757-4766.	3.1	67
11	Interactions between meat proteins and barley (Hordeum spp.) β-glucan within a reduced-fat breakfast sausage system. Meat Science, 2004, 68, 419-430.	5.5	64
12	Variation in Heat and Pressure Resistance of Verotoxigenic and Nontoxigenic Escherichia coli. Journal of Food Protection, 2015, 78, 111-120.	1.7	57
13	Microbial ecology of fresh pork stored under modified atmosphere at â^'1, 4.4 and 10°C. International Journal of Food Microbiology, 1993, 18, 1-14.	4.7	54
14	Spraying hatching eggs with electrolyzed oxidizing water reduces eggshell microbial load without compromising broiler production parameters. Poultry Science, 2009, 88, 1121-1127.	3.4	54
15	Biochemical, Structural, and Genetic Characterization of Tridecaptin A ₁ , an Antagonist of <i>Campylobacter jejuni</i> . ChemBioChem, 2014, 15, 243-249.	2.6	54
16	Evaluation of Detection Methods for Screening Meat and Poultry Products for the Presence of Foodborne Pathogens. Journal of Food Protection, 2005, 68, 2637-2647.	1.7	53
17	High Prevalence of Hyper-Aerotolerant Campylobacter jejuni in Retail Poultry with Potential Implication in Human Infection. Frontiers in Microbiology, 2015, 6, 1263.	3.5	53
18	Structural Characterization of the Highly Cyclized Lantibiotic Paenicidin A via a Partial Desulfurization/Reduction Strategy. Journal of the American Chemical Society, 2012, 134, 19540-19543.	13.7	51

#	Article	IF	CITATIONS
19	Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food. Applied and Environmental Microbiology, 2017, 83, .	3.1	50
20	Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli. Applied and Environmental Microbiology, 2017, 83, .	3.1	49
21	Filament formation by foodborne bacteria under sublethal stress. International Journal of Food Microbiology, 2013, 165, 97-110.	4.7	48
22	The locus of heat resistance (LHR) mediates heat resistance in Salmonella enterica , Escherichia coli and Enterobacter cloacae. Food Microbiology, 2017, 64, 96-103.	4.2	48
23	Cold plasma treatment of ready-to-eat ham: Influence of process conditions and storage on inactivation of Listeria innocua. Food Research International, 2019, 123, 276-285.	6.2	48
24	Genotypic analysis of Escherichia coli recovered from product and equipment at a beef-packing plant. Journal of Applied Microbiology, 2004, 97, 78-86.	3.1	47
25	Identification of an N-Terminal Formylated, Two-Peptide Bacteriocin from Enterococcus faecalis 710C. Journal of Agricultural and Food Chemistry, 2011, 59, 5602-5608.	5.2	44
26	Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels. Carbohydrate Polymers, 2019, 222, 114977.	10.2	44
27	Changes in Microbial Parameters and Gas Composition During Modified Atmosphere Storage of Fresh Pork Loin Cuts. Journal of Food Protection, 1991, 54, 778-783.	1.7	42
28	Effect of inâ€package atmospheric cold plasma discharge on microbial safety and quality of readyâ€ŧoâ€eat ham in modified atmospheric packaging during storage. Journal of Food Science, 2020, 85, 1203-1212.	3.1	42
29	Hatching egg and newly hatched chick yolk sac total IgY content at 3 broiler breeder flock ages. Poultry Science, 2012, 91, 758-764.	3.4	40
30	Effects of nisin and reutericyclin on resistance of endospores of Clostridium spp. to heat and high pressure. Food Microbiology, 2013, 34, 46-51.	4.2	40
31	The behaviour of log phase Escherichia coli at temperatures that fluctuate about the minimum for growth. Letters in Applied Microbiology, 2004, 39, 296-300.	2.2	36
32	Differential Survival of Hyper-Aerotolerant Campylobacter jejuni under Different Gas Conditions. Frontiers in Microbiology, 2017, 8, 954.	3.5	35
33	Production of piscicolin 126 by Carnobacterium maltaromaticum UAL26 is controlled by temperature and induction peptide concentration. Archives of Microbiology, 2006, 186, 317-325.	2.2	34
34	Solution Structures of the Linear Leaderless Bacteriocins Enterocin 7A and 7B Resemble Carnocyclin A, a Circular Antimicrobial Peptide. Biochemistry, 2013, 52, 3987-3994.	2.5	34
35	Purification of leucocin A for use on wieners to inhibit Listeria monocytogenes in the presence of spoilage organisms. International Journal of Food Microbiology, 2017, 255, 25-31.	4.7	33
36	Frequent Implication of Multistress-Tolerant <i>Campylobacter jejuni</i> in Human Infections. Emerging Infectious Diseases, 2018, 24, 1037-1044.	4.3	32

#	Article	IF	CITATIONS
37	The Locus of Heat Resistance Confers Resistance to Chlorine and Other Oxidizing Chemicals in Escherichia coli. Applied and Environmental Microbiology, 2020, 86, .	3.1	31
38	Risk Ranking: Investigating Expert and Public Differences in Evaluating Food Safety Hazards. Journal of Food Protection, 2010, 73, 1875-1885.	1.7	30
39	Detection of Bacteriocins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Applied and Environmental Microbiology, 1999, 65, 2238-2242.	3.1	29
40	Compatible solutes contribute to heat resistance and ribosome stability in Escherichia coli AW1.7. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1351-1357.	2.3	28
41	Stress Response and Adaptation of Listeria monocytogenes 08-5923 Exposed to a Sublethal Dose of Carnocyclin A. Applied and Environmental Microbiology, 2014, 80, 3835-3841.	3.1	26
42	Development and validation of a surrogate strain cocktail to evaluate bactericidal effects of pressure on verotoxigenic Escherichia coli. International Journal of Food Microbiology, 2015, 205, 16-22.	4.7	25
43	Solute Transport Proteins and the Outer Membrane Protein NmpC Contribute to Heat Resistance of Escherichia coli AW1.7. Applied and Environmental Microbiology, 2011, 77, 2961-2967.	3.1	24
44	Tolerance to stress conditions associated with food safety in Campylobacter jejuni strains isolated from retail raw chicken. Scientific Reports, 2019, 9, 11915.	3.3	24
45	Effect of chitosan, and bacteriocin – Producing Carnobacterium maltaromaticum on survival of Escherichia coli and Salmonella Typhimurium on beef. International Journal of Food Microbiology, 2019, 290, 68-75.	4.7	24
46	The behaviour of log phase Escherichia coli at temperatures below the minimum for sustained growth. Food Microbiology, 2002, 19, 83-90.	4.2	23
47	Use of the fluorescent probe LAURDAN to label and measure inner membrane fluidity of endospores of Clostridium spp Journal of Microbiological Methods, 2012, 91, 93-100.	1.6	23
48	Effect of Pressure, Reconstituted RTE Meat Microbiota, and Antimicrobials on Survival and Post-pressure Growth of Listeria monocytogenes on Ham. Frontiers in Microbiology, 2018, 9, 1979.	3.5	22
49	Consumer Sensory Comparisons Among Beef, Horse, Elk, and Bison Using Preferred Attributes Elicitation and Checkâ€Allâ€Thatâ€Apply Methods. Journal of Food Science, 2019, 84, 3009-3017.	3.1	22
50	Behaviour of log-phase Escherichia coli at temperatures near the minimum for growth. International Journal of Food Microbiology, 2003, 88, 55-61.	4.7	21
51	Differential expression of proteins in cold-adapted log-phase cultures of Escherichia coli incubated at 8, 6 or 2 ŰC. International Journal of Food Microbiology, 2006, 107, 12-19.	4.7	21
52	Differential gene expression and filamentation of Listeria monocytogenes 08-5923 exposed to sodium lactate and sodium diacetate. Food Microbiology, 2017, 63, 153-158.	4.2	21
53	Role of myofibers, perimysium and adipocytes in horse meat toughness. Meat Science, 2018, 146, 109-121.	5.5	21
54	Storage Life of Selected Meat Sandwiches at 4°C in Modified Gas Atmospheres. Journal of Food Protection, 1989, 52, 792-798.	1.7	20

#	Article	IF	CITATIONS
55	Assessment of the hygienic performances of hamburger patty production processes. International Journal of Food Microbiology, 1997, 36, 171-178.	4.7	20
56	Genetic diversity of Escherichia coli recovered from the oral cavity of beef cattle and their relatedness to faecal E. coli. Letters in Applied Microbiology, 2004, 39, 523-527.	2.2	18
57	Involvement of Dehydroalanine and Dehydrobutyrine in the Addition of Glutathione to Nisin. Journal of Agricultural and Food Chemistry, 2003, 51, 3174-3178.	5.2	17
58	Growth and Filamentation of Cold-Adapted, Log-Phase Listeria monocytogenes Exposed to Salt, Acid, or Alkali Stress at 3°C. Journal of Food Protection, 2012, 75, 2142-2150.	1.7	17
59	The effect of growth temperature, process temperature, and sodium chloride on the high-pressure inactivation of Listeria monocytogenes on ham. European Food Research and Technology, 2016, 242, 2021-2029.	3.3	17
60	<i>In Situ</i> Determination of Clostridium Endospore Membrane Fluidity during Pressure-Assisted Thermal Processing in Combination with Nisin or Reutericyclin. Applied and Environmental Microbiology, 2013, 79, 2103-2106.	3.1	16
61	Heat and Pressure Resistance in Escherichia coli Relates to Protein Folding and Aggregation. Frontiers in Microbiology, 2020, 11, 111.	3.5	16
62	Sodium chloride-induced filamentation and alternative gene expression of <i>fts</i> , <i>murZ,</i> and <i>gnd</i> in <i>Listeria monocytogenes</i> 08-5923 on vacuum-packaged ham. FEMS Microbiology Letters, 2014, 360, 152-156.	1.8	15
63	A case of â€`blown pack' spoilage of vacuumâ€packaged pork likely associated with Clostridium estertheticum in Canada. Letters in Applied Microbiology, 2020, 70, 13-20.	2.2	15
64	Shelf life extension of liquid whole eggs by heat and bacteriocin treatment. Czech Journal of Food Sciences, 2010, 28, 280-289.	1.2	14
65	Effect of the food matrix on pressure resistance of Shiga-toxin producing Escherichia coli. Food Microbiology, 2016, 57, 96-102.	4.2	14
66	The Effect of Carbohydrates and Bacteriocins on the Growth Kinetics and Resistance of Listeria monocytogenes. Frontiers in Microbiology, 2018, 9, 347.	3.5	14
67	Nisin: A Novel Substrate for Glutathione S-Transferase Isolated from Fresh Beef. Journal of Food Science, 2002, 67, 2288-2293.	3.1	13
68	Characterization of a highly potent antimicrobial peptide microcin N from uropathogenicEscherichia coli. FEMS Microbiology Letters, 2016, 363, fnw095.	1.8	13
69	Lethality of high-pressure carbon dioxide on Shiga toxin-producing Escherichia coli, Salmonella and surrogate organisms on beef jerky. International Journal of Food Microbiology, 2020, 321, 108550.	4.7	13
70	Quality of fresh retail pork cuts stored in modified atmosphere under temperature conditions simulating export to distant markets. Meat Science, 1994, 38, 163-177.	5.5	12
71	Risk factors for ciprofloxacin resistance in reported Campylobacter infections in southern Alberta. Epidemiology and Infection, 2008, 136, 903-912.	2.1	12
72	Evaluation of Environmental Sampling Methods and Rapid Detection Assays for Recovery and Identification of Listeria spp. from Meat Processing Facilities. Journal of Food Protection, 2009, 72, 696-701.	1.7	12

#	Article	IF	CITATIONS
73	Identification of Didecyldimethylammonium Salts and Salicylic Acid as Antimicrobial Compounds in Commercial Fermented Radish Kimchi. Journal of Agricultural and Food Chemistry, 2015, 63, 3053-3058.	5.2	12
74	Travelers' Knowledge of Prevention and Treatment of Travelers' Diarrhea. Journal of Travel Medicine, 2006, 13, 351-355.	3.0	11
75	Microbiota of regular sodium and sodium-reduced ready-to-eat meat products obtained from the retail market. Canadian Journal of Microbiology, 2015, 61, 150-154.	1.7	11
76	Comparative Genomics and Characterization of the Late Promoter pR' from Shiga Toxin Prophages in Escherichia coli. Viruses, 2018, 10, 595.	3.3	10
77	A Microbiological Assessment of On-Farm Food Safety Cleaning Methods in Broiler Barns. Journal of Applied Poultry Research, 2006, 15, 326-332.	1.2	9
78	Detection of pathogenic Escherichia coli on potentially contaminated beef carcasses using cassette PCR and conventional PCR. BMC Microbiology, 2019, 19, 175.	3.3	9
79	Effects of high-pressure carbon dioxide on microbial quality and germination of cereal grains and beans. Journal of Supercritical Fluids, 2021, 175, 105272.	3.2	9
80	Effect of drying on oxidation of membrane lipids and expression of genes encoded by the Shiga toxin prophage in Escherichia coli. Food Microbiology, 2020, 86, 103332.	4.2	7
81	Characterization of germination of spores of Clostridium estertheticum , the primary causative agent of blown pack spoilage of vacuum packaged beef. Food Research International, 2016, 87, 109-114.	6.2	6
82	Production of Antibodies against Enterocin B for Immunological Detection and Purification Purposes. Food and Agricultural Immunology, 2001, 13, 225-239.	1.4	5
83	Contribution of the Locus of Heat Resistance to Growth and Survival of Escherichia coli at Alkaline pH and at Alkaline pH in the Presence of Chlorine. Microorganisms, 2021, 9, 701.	3.6	5
84	Mechanism for temperature-dependent production of piscicolin 126. Microbiology (United Kingdom), 2014, 160, 1670-1678.	1.8	4
85	Monitoring food pathogens: Novel instrumentation for cassette PCR testing. PLoS ONE, 2018, 13, e0197100.	2.5	4
86	Effect of low temperature on stability of ÃŽÂ,-type plasmids in <i>Carnobacterium maltaromaticum</i> . FEMS Microbiology Letters, 2008, 280, 14-20.	1.8	3
87	Nisin-producing Lactococcus spp. from mayonnaise-based products and their raw materials. European Food Research and Technology, 2010, 231, 137-141.	3.3	3
88	Application of lab-on-a-chip multiplex cassette PCR for the detection of enterohemorrhagic Escherichia coli. BMC Microbiology, 2019, 19, 93.	3.3	3
89	Draft Genome Sequence of Enterococcus canintestini 49, a Potential Probiotic That Produces Multiple Bacteriocins. Genome Announcements, 2017, 5, .	0.8	2
90	Egg Production Systems and Salmonella in Canada. , 2017, , 59-69.		1

Egg Production Systems and Salmonella in Canada. , 2017, , 59-69. 90

#	Article	IF	CITATIONS
91	Effect of sodium chloride and chitosan on the inactivation of heat resistant or Shiga-toxin producing Escherichia coli during grilling of burger patties. International Journal of Food Microbiology, 2019, 308, 108308.	4.7	1
92	Comparison of a Miniaturized Cassette PCR System with a Commercially Available Platform for Detecting Escherichia coli in Beef Carcass Swabs. Micromachines, 2021, 12, 959.	2.9	0