
Linjiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2577849/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry, 2018, 10, 1180-1189.	6.6	883
2	Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nature Materials, 2014, 13, 954-960.	13.3	532
3	Functional materials discovery using energy–structure–function maps. Nature, 2017, 543, 657-664.	13.7	348
4	A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chemical Science, 2020, 11, 543-550.	3.7	265
5	Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nature Materials, 2020, 19, 195-202.	13.3	237
6	Barely porous organic cages for hydrogen isotope separation. Science, 2019, 366, 613-620.	6.0	210
7	Porous Organic Cages for Sulfur Hexafluoride Separation. Journal of the American Chemical Society, 2016, 138, 1653-1659.	6.6	200
8	Styrene Purification by Guest-Induced Restructuring of Pillar[6]arene. Journal of the American Chemical Society, 2017, 139, 2908-2911.	6.6	191
9	3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes. Journal of the American Chemical Society, 2020, 142, 16842-16848.	6.6	174
10	Synthesis of Stable Thiazole-Linked Covalent Organic Frameworks via a Multicomponent Reaction. Journal of the American Chemical Society, 2020, 142, 11131-11138.	6.6	158
11	Layered microporous polymers by solvent knitting method. Science Advances, 2017, 3, e1602610.	4.7	135
12	Three-dimensional protonic conductivity in porous organic cage solids. Nature Communications, 2016, 7, 12750.	5.8	133
13	A Cubic 3D Covalent Organic Framework with nbo Topology. Journal of the American Chemical Society, 2021, 143, 15011-15016.	6.6	87
14	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	11.1	82
15	Covalent Organic Framework Nanosheets Embedding Single Cobalt Sites for Photocatalytic Reduction of Carbon Dioxide. Chemistry of Materials, 2020, 32, 9107-9114.	3.2	79
16	Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages. ACS Central Science, 2017, 3, 734-742.	5.3	68
17	Trapping virtual pores by crystal retro-engineering. Nature Chemistry, 2015, 7, 153-159.	6.6	52
18	Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chemical Science, 2021, 12, 10742-10754.	3.7	52

LINJIANG CHEN

#	Article	IF	CITATIONS
19	Crystallization of Covalent Triazine Frameworks via a Heterogeneous Nucleation Approach for Efficient Photocatalytic Applications. Chemistry of Materials, 2021, 33, 1994-2003.	3.2	48
20	Core–Shell Crystals of Porous Organic Cages. Angewandte Chemie - International Edition, 2018, 57, 11228-11232.	7.2	45
21	Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. Journal of Materials Chemistry A, 2020, 8, 7158-7170.	5.2	45
22	Understanding static, dynamic and cooperative porosity in molecular materials. Chemical Science, 2016, 7, 4875-4879.	3.7	43
23	Inside information on xenon adsorption in porous organic cages by NMR. Chemical Science, 2017, 8, 5721-5727.	3.7	37
24	Oriented Twoâ€Dimensional Porous Organic Cage Crystals. Angewandte Chemie - International Edition, 2017, 56, 9391-9395.	7.2	33
25	Digital navigation of energy–structure–function maps for hydrogen-bonded porous molecular crystals. Nature Communications, 2021, 12, 817.	5.8	31
26	1,3-Diyne-Linked Conjugated Microporous Polymer for Selective CO ₂ Capture. Industrial & Engineering Chemistry Research, 2018, 57, 9254-9260.	1.8	23
27	Geometric landscapes for material discovery within energy–structure–function maps. Chemical Science, 2020, 11, 5423-5433.	3.7	23
28	Efficient separation of propane and propene by a hypercrosslinked polymer doped with Ag(<scp>i</scp>). Journal of Materials Chemistry A, 2019, 7, 25521-25525.	5.2	21
29	Core–Shell Crystals of Porous Organic Cages. Angewandte Chemie, 2018, 130, 11398-11402.	1.6	14
30	Sub-4 nm Nanodiamonds from Graphene-Oxide and Nitrated Polycyclic Aromatic Hydrocarbons at 423 K. ACS Nano, 2021, 15, 17392-17400.	7.3	13
31	Accelerating computational discovery of porous solids through improved navigation of energy-structure-function maps. Science Advances, 2021, 7, .	4.7	13
32	Oriented Twoâ€Đimensional Porous Organic Cage Crystals. Angewandte Chemie, 2017, 129, 9519-9523.	1.6	13
33	NMR relaxation and modelling study of the dynamics of SF6 and Xe in porous organic cages. Physical Chemistry Chemical Physics, 2019, 21, 24373-24382.	1.3	12
34	First-principles computational investigation of nitrogen-doped carbon nanotubes as anode materials for lithium-ion and potassium-ion batteries. RSC Advances, 2019, 9, 17299-17307.	1.7	11
35	In Silico Tuning of the Pore Surface Functionality in Al-MOFs for Trace CH ₃ I Capture. ACS Omega, 2021, 6, 18169-18177.	1.6	10
36	Inherent Ethyl Acetate Selectivity in a Trianglimine Molecular Solid. Chemistry - A European Journal, 2021, 27, 10589-10594.	1.7	6

LINJIANG CHEN

#	Article	IF	CITATIONS
37	Pyreneâ€based hypercrosslinked microporous resins for effective CO ₂ capture. Journal of Applied Polymer Science, 2019, 136, 47448.	1.3	4
38	Understanding the effect of host flexibility on the adsorption of CH ₄ , CO ₂ and SF ₆ in porous organic cages. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 547-555.	0.4	3
39	Exploring cooperative porosity in organic cage crystals using <i>in situ</i> diffraction and molecular simulations. Faraday Discussions, 2021, 225, 100-117.	1.6	1
40	Innentitelbild: Core-Shell Crystals of Porous Organic Cages (Angew. Chem. 35/2018). Angewandte Chemie, 2018, 130, 11250-11250.	1.6	0