Gordon G Wallace

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2577411/gordon-g-wallace-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,194 papers 64,472 citations

112 h-index 206 g-index

1,262 ext. papers

70,541 ext. citations

7.2 avg, IF

O L-index

#	Paper	IF	Citations
1194	The Australian National Fabrication Facility: Micro/nanotechnologies from Concept to Translation to End Users. <i>Advanced Functional Materials</i> , 2022 , 32, 2101995	15.6	
1193	Comparison of the In Vitro and In Vivo Electrochemical Performance of Bionic Electrodes <i>Micromachines</i> , 2022 , 13,	3.3	2
1192	Wearable Photo-Thermo-Electrochemical Cells (PTECs) Harvesting Solar Energy <i>Macromolecular Rapid Communications</i> , 2022 , e2200001	4.8	1
1191	Bioprinting of Chondrocyte Stem Cell Co-Cultures for Auricular Cartilage Regeneration <i>ACS Omega</i> , 2022 , 7, 5908-5920	3.9	2
1190	Earth-abundant electrocatalysts for sustainable energy conversion 2022 , 131-168		
1189	A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen <i>Nature Communications</i> , 2022 , 13, 1304	17.4	5
1188	Enhanced wireless cell stimulation using soft and improved bipolar electroactive conducting polymer templates. <i>Applied Materials Today</i> , 2022 , 27, 101481	6.6	O
1187	Suitability of Marine- and Porcine-Derived Collagen Type I Hydrogels for Bioprinting and Tissue Engineering Scaffolds. <i>Marine Drugs</i> , 2022 , 20, 366	6	3
1186	All-polymer wearable thermoelectrochemical cells harvesting body heat <i>IScience</i> , 2021 , 24, 103466	6.1	2
1185	Invitro and Invivo Study of PCL-Hydrogel Scaffold to Advance Bioprinting Translation in Microtia Reconstruction. <i>Journal of Craniofacial Surgery</i> , 2021 , 32, 1931-1936	1.2	1
1184	Current status of membraneless water electrolysis cells. Current Opinion in Electrochemistry, 2021, 1008	3 8 ⁄12	1
1183	Matured Myofibers in Bioprinted Constructs with In Vivo Vascularization and Innervation. <i>Gels</i> , 2021 , 7,	4.2	2
1182	Precision Medicine in Ossiculoplasty. <i>Otology and Neurotology</i> , 2021 , 42, e177-e185	2.6	2
1181	In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering. <i>Acta Biomaterialia</i> , 2021 , 123, 286-297	10.8	12
1180	A 3D printed graphene electrode device for enhanced and scalable stem cell culture, osteoinduction and tissue building. <i>Materials and Design</i> , 2021 , 201, 109473	8.1	2
1179	Fibrinogen, collagen, and transferrin adsorption to poly(3,4-ethylenedioxythiophene)-xylorhamno-uronic glycan composite conducting polymer biomaterials for wound healing applications. <i>Biointerphases</i> , 2021 , 16, 021003	1.8	4
1178	The significance of supporting electrolyte on poly (vinyl alcohol)Iron(II)/iron(III) solid-state electrolytes for wearable thermo-electrochemical cells. <i>Electrochemistry Communications</i> , 2021 , 124, 106938	5.1	13

(2021-2021)

1177	Additive manufacturing enables personalised porous high-density polyethylene surgical implant manufacturing with improved tissue and vascular ingrowth. <i>Applied Materials Today</i> , 2021 , 22, 100965	6.6	4
1176	Unzipping chemical bonds of non-layered bulk structures to form ultrathin nanocrystals. <i>Matter</i> , 2021 , 4, 955-968	12.7	3
1175	Polyisocyanate bridged environmental graphene/epoxy nanocomposite coatings with excellent anticorrosion performance. <i>Progress in Organic Coatings</i> , 2021 , 153, 106167	4.8	4
1174	Boosting Formate Production from CO at High Current Densities Over a Wide Electrochemical Potential Window on a SnS Catalyst. <i>Advanced Science</i> , 2021 , 8, e2004521	13.6	10
1173	Redox Polymers for Tissue Engineering Frontiers in Medical Technology, 2021, 3, 669763	1.9	1
1172	Electrochemiluminescence at 3D Printed Titanium Electrodes. Frontiers in Chemistry, 2021, 9, 662810	5	3
1171	Engineering human neural tissue analogs by 3D bioprinting and electrostimulation. <i>APL Bioengineering</i> , 2021 , 5, 020901	6.6	4
1170	Dielectric Elastomer Actuators, Neuromuscular Interfaces, and Foreign Body Response in Artificial Neuromuscular Prostheses: A Review of the Literature for an In Vivo Application. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100041	10.1	4
1169	Tunable flow rate in textile-based materials utilising composite fibres. <i>Journal of the Textile Institute</i> , 2021 , 112, 568-577	1.5	
1168	Cathodic exfoliation of graphite into graphene nanoplatelets in aqueous solution of alkali metal salts. <i>Journal of Materials Science</i> , 2021 , 56, 3612-3622	4.3	5
1167	FLASH: Fluorescently LAbelled Sensitive Hydrogel to monitor bioscaffolds degradation during neocartilage generation. <i>Biomaterials</i> , 2021 , 264, 120383	15.6	7
1166	Knowledge creation in complex inter-organizational arrangements: understanding the barriers and enablers of university-industry knowledge creation in science-based cooperation. <i>Journal of Knowledge Management</i> , 2021 , 25, 743-769	7.3	8
1165	Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. <i>Applied Materials Today</i> , 2021 , 22, 100914	6.6	15
1164	3D bioprinting dermal-like structures using species-specific ulvan. <i>Biomaterials Science</i> , 2021 , 9, 2424-24	1 3 84	4
1163	Wireless electrochemiluminescence at functionalised gold microparticles using 3D titanium electrode arrays. <i>Chemical Communications</i> , 2021 , 57, 4642-4645	5.8	5
1162	Fused filament fabrication 3D printed polylactic acid electroosmotic pumps. <i>Lab on A Chip</i> , 2021 , 21, 3338-3351	7.2	1
1161	Smart polymer implants as an emerging technology for treating airway collapse in obstructive sleep apnea: a pilot (proof of concept) study. <i>Journal of Clinical Sleep Medicine</i> , 2021 , 17, 315-324	3.1	
1160	Impact of Protein Fouling on the Charge Injection Capacity, Impedance, and Effective Electrode Area of Platinum Electrodes for Bionic Devices. <i>ChemElectroChem</i> , 2021 , 8, 1078-1090	4.3	5

1159	One-Pot Hydrothermal Synthesis of Solution-Processable MoS/PEDOT:PSS Composites for High-Performance Supercapacitors. <i>ACS Applied Materials & District Materials</i> (2021), 13, 7285-7296	9.5	17
1158	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001	3	63
1157	Abuse-Tolerant Electrolytes for Lithium-Ion Batteries. <i>Advanced Science</i> , 2021 , 8, e2003694	13.6	5
1156	Engineering Carbon Materials for Electrochemical Oxygen Reduction Reactions. <i>Advanced Energy Materials</i> , 2021 , 11, 2100695	21.8	13
1155	Atomic nickel cluster decorated defect-rich copper for enhanced C2 product selectivity in electrocatalytic CO2 reduction. <i>Applied Catalysis B: Environmental</i> , 2021 , 291, 120030	21.8	21
1154	Reference Phantom Method for Ultrasonic Imaging of Thin Dynamic Constructs. <i>Ultrasound in Medicine and Biology</i> , 2021 , 47, 2388-2403	3.5	O
1153	Interaction of graphene, MnO, and Ca2+ for enhanced biomimetic, Bubble-freelbxygen evolution reaction at mild pH. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 28397-28405	6.7	О
1152	A versatile transition metal ion-binding motif derived from covalent organic framework for efficient CO2 electroreduction. <i>Applied Catalysis B: Environmental</i> , 2021 , 291, 119915	21.8	2
1151	Simultaneous Anodic and Cathodic Exfoliation of Graphite Electrodes in an Aqueous Solution of Inorganic Salt. <i>ChemElectroChem</i> , 2021 , 8, 3168-3173	4.3	3
1150	Shaping collagen for engineering hard tissues: Towards a printomics approach. <i>Acta Biomaterialia</i> , 2021 , 131, 41-61	10.8	7
1149	Synthesis, properties, and biomedical applications of alginate methacrylate (ALMA)-based hydrogels: Current advances and challenges. <i>Applied Materials Today</i> , 2021 , 24, 101150	6.6	6
1148	Platinized graphene fiber electrodes uncover direct spleen-vagus communication. <i>Communications Biology</i> , 2021 , 4, 1097	6.7	O
1147	The length dependent selectivity on aligned Cu nanowires for C1 products from CO2 Electroreduction. <i>Electrochimica Acta</i> , 2021 , 394, 139099	6.7	1
1146	3D-Printed Coaxial Hydrogel Patches with Mussel-Inspired Elements for Prolonged Release of Gemcitabine <i>Polymers</i> , 2021 , 13,	4.5	1
1145	Fabrication of Aligned Biomimetic Gellan Gum-Chitosan Microstructures through 3D Printed Microfluidic Channels and Multiple In Situ Cross-Linking Mechanisms. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 3638-3648	5.5	8
1144	Electrofluidic control of bioactive molecule delivery into soft tissue models based on gelatin methacryloyl hydrogels using threads and surgical sutures. <i>Scientific Reports</i> , 2020 , 10, 7120	4.9	7
1143	20 Year Review of Three-dimensional Tools in Otology: Challenges of Translation and Innovation. <i>Otology and Neurotology</i> , 2020 , 41, 589-595	2.6	4
1142	A wearable sensor for the detection of sodium and potassium in human sweat during exercise. <i>Talanta</i> , 2020 , 219, 121145	6.2	40

(2020-2020)

1141	Free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photo-crosslinking during extrusion. <i>Bioprinting</i> , 2020 , 19, e00087	7	11
1140	Nanoscale piezoelectric effect of biodegradable PLA-based composite fibers by piezoresponse force microscopy. <i>Nanotechnology</i> , 2020 , 31, 375708	3.4	6
1139	Conducting Polymer Mediated Electrical Stimulation Induces Multilineage Differentiation with Robust Neuronal Fate Determination of Human Induced Pluripotent Stem Cells. <i>Cells</i> , 2020 , 9,	7.9	12
1138	Wet-Spun Trojan Horse Cell Constructs for Engineering Muscle. Frontiers in Chemistry, 2020 , 8, 18	5	8
1137	Modeling the upper airway: A precursor to personalized surgical interventions for the treatment of sleep apnea. <i>Journal of Biomedical Materials Research - Part A</i> , 2020 , 108, 1419-1425	5.4	1
1136	Engineered 2D Transition Metal Dichalcogenides Vision of Viable Hydrogen Evolution Reaction Catalysis. <i>Advanced Energy Materials</i> , 2020 , 10, 1903870	21.8	79
1135	Highly ordered mesoporous carbon/iron porphyrin nanoreactor for the electrochemical reduction of CO2. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14966-14974	13	9
1134	Biomimetic corneal stroma using electro-compacted collagen. <i>Acta Biomaterialia</i> , 2020 , 113, 360-371	10.8	13
1133	Conducting polymer composites for unconventional solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4677-4699	13	58
1132	Turning Cotton to Self-Supported Electrocatalytic Carbon Electrode for Highly Efficient Oxygen Reduction. <i>Electrocatalysis</i> , 2020 , 11, 317-328	2.7	3
1131	Encapsulation of Human Natural and Induced Regulatory T-Cells in IL-2 and CCL1 Supplemented Alginate-GelMA Hydrogel for 3D Bioprinting. <i>Advanced Functional Materials</i> , 2020 , 30, 2000544	15.6	16
1130	3D textile structures with integrated electroactive electrodes for wearable electrochemical sensors. <i>Journal of the Textile Institute</i> , 2020 , 111, 1587-1595	1.5	6
1129	Molecular interactions and forces of adhesion between single human neural stem cells and gelatin methacrylate hydrogels of varying stiffness. <i>Acta Biomaterialia</i> , 2020 , 106, 156-169	10.8	17
1128	3D Printed Sugar-Sensing Hydrogels. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e1900610	4.8	3
1127	Energy materials for transient power sources. MRS Bulletin, 2020, 45, 121-128	3.2	4
1126	Ethical and regulatory considerations for surgeons as consumers and creators of three-dimensional printed medical devices. <i>ANZ Journal of Surgery</i> , 2020 , 90, 1477-1481	1	7
1125	Development of a Platelet Lysate-Based Printable, Transparent Biomaterial With Regenerative Potential for Epithelial Corneal Injuries. <i>Translational Vision Science and Technology</i> , 2020 , 9, 40	3.3	0
1124	Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation. <i>Biomedicines</i> , 2020 , 9,	4.8	12

1123	Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?. <i>Trends in Biotechnology</i> , 2020 , 38, 1316-1328	15.1	35
1122	Implementing Obstetrics Quality Improvement, Driven by Medico-legal Risk, is Associated With Improved Workplace Culture. <i>Journal of Obstetrics and Gynaecology Canada</i> , 2020 , 42, 38-47.e5	1.3	4
1121	3D hybrid printing platform for auricular cartilage reconstruction. <i>Biomedical Physics and Engineering Express</i> , 2020 , 6, 035003	1.5	7
1120	Optimizing Electron Densities of Ni-N-C Complexes by Hybrid Coordination for Efficient Electrocatalytic CO Reduction. <i>ChemSusChem</i> , 2020 , 13, 929-937	8.3	35
1119	Composite Tissue Adhesive Containing Catechol-Modified Hyaluronic Acid and Poly-l-lysine <i>ACS Applied Bio Materials</i> , 2020 , 3, 628-638	4.1	10
1118	Polyterthiophenes Cross-Linked with Terpyridyl Metal Complexes for Molecular Architecture of Optically and Electrochemically Tunable Materials. <i>ChemElectroChem</i> , 2020 , 7, 4453-4459	4.3	3
1117	A microvalve cell printing technique using riboflavin photosensitizer for selective cell patterning onto a retinal chip. <i>Bioprinting</i> , 2020 , 20, e00097	7	1
1116	Bipolar electroactive conducting polymers for wireless cell stimulation. <i>Applied Materials Today</i> , 2020 , 21, 100804	6.6	6
1115	Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. <i>Advanced Energy Materials</i> , 2020 , 10, 2002621	21.8	22
1114	Data on the bipolar electroactive conducting polymers for wireless cell stimulation. <i>Data in Brief</i> , 2020 , 33, 106406	1.2	1
1113	Dual Delivery of Gemcitabine and Paclitaxel by Wet-Spun Coaxial Fibers Induces Pancreatic Ductal Adenocarcinoma Cell Death, Reduces Tumor Volume, and Sensitizes Cells to Radiation. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2001115	10.1	4
1112	Advanced Wearable Thermocells for Body Heat Harvesting. Advanced Energy Materials, 2020, 10, 20025	3:9 1.8	41
1111	A Self-Assembled CO Reduction Electrocatalyst: Posy-Bouquet-Shaped Gold-Polyaniline Core-Shell Nanocomposite. <i>ChemSusChem</i> , 2020 , 13, 5023-5030	8.3	4
1110	3D Printing of Cytocompatible Graphene/Alginate Scaffolds for Mimetic Tissue Constructs. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 824	5.8	16
1109	Hybrid Printing Using Cellulose Nanocrystals Reinforced GelMA/HAMA Hydrogels for Improved Structural Integration. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2001410	10.1	15
1108	Nanotechnology-based disinfectants and sensors for SARS-CoV-2. <i>Nature Nanotechnology</i> , 2020 , 15, 618-621	28.7	171
1107	3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2001342	10.1	6
1106	Bidirectional Core Sandwich Structure of Reduced Graphene Oxide and Spinnable Multiwalled Carbon Nanotubes for Electromagnetic Interference Shielding Effectiveness. <i>ACS Applied Materials</i>	9.5	7

1105	Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. <i>Materials Science and Engineering C</i> , 2020 , 107, 110312	8.3	28
1104	A robust 3D printed multilayer conductive graphene/polycaprolactone composite electrode. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1664-1670	7.8	5
1103	Hierarchical architectures of mesoporous Pd on highly ordered TiO2 nanotube arrays for electrochemical CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8041-8048	13	8
1102	3D Bioprinting and Differentiation of Primary Skeletal Muscle Progenitor Cells. <i>Methods in Molecular Biology</i> , 2020 , 2140, 229-242	1.4	7
1101	Bioprinting Stem Cells in Hydrogel for In Situ Surgical Application: A Case for Articular Cartilage. <i>Methods in Molecular Biology</i> , 2020 , 2140, 145-157	1.4	6
1100	Self-healing graphene oxide-based composite for electromagnetic interference shielding. <i>Carbon</i> , 2019 , 155, 499-505	10.4	31
1099	A new class of bubble-free water electrolyzer that is intrinsically highly efficient. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 23568-23579	6.7	10
1098	A 3D-Printed Electrochemical Water Splitting Cell. Advanced Materials Technologies, 2019 , 4, 1900433	6.8	11
1097	Facile Development of a Fiber-Based Electrode for Highly Selective and Sensitive Detection of Dopamine. <i>ACS Sensors</i> , 2019 , 4, 2599-2604	9.2	21
1096	Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. <i>Energy and Environmental Science</i> , 2019 , 12, 747-755	35.4	76
1095	Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO2 Reduction to CO. <i>ACS Energy Letters</i> , 2019 , 4, 666-672	20.1	104
1094	A direct 3D suspension near-field electrospinning technique for the fabrication of polymer nanoarrays. <i>Nanotechnology</i> , 2019 , 30, 195301	3.4	4
1093	Discussion paper on proposed new regulatory changes on 3D technology: a surgical perspective. <i>ANZ Journal of Surgery</i> , 2019 , 89, 117-121	1	2
1092	A simple technique for development of fibres with programmable microsphere concentration gradients for local protein delivery. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 556-565	7.3	2
1091	Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1900425	10.1	35
1090	Dynamics of Inter-Molecular Interactions Between Single AlDligomeric and Aggregate Species by High-Speed Atomic Force Microscopy. <i>Journal of Molecular Biology</i> , 2019 , 431, 2687-2699	6.5	9
1089	Effects of Interfacial Layers on the Open Circuit Voltage of Polymer/Fullerene Bulk Heterojunction Devices Studied by Charge Extraction Techniques. <i>ACS Applied Materials & Devices Studied & Devices Studied Materials & Devices Studied Materials & Devices</i>)30 ⁵ 210	041
1088	Facile electrochemical synthesis of ultrathin iron oxyhydroxide nanosheets for the oxygen evolution reaction. <i>Chemical Communications</i> , 2019 , 55, 8808-8811	5.8	9

1087	Using Chronopotentiometry to Better Characterize the Charge Injection Mechanisms of Platinum Electrodes Used in Bionic Devices. <i>Frontiers in Neuroscience</i> , 2019 , 13, 380	5.1	11
1086	Wet-spinning and carbonization of graphene/PAN-based fibers: Toward improving the properties of carbon fibers. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47932	2.9	9
1085	Quantitative ultrasound imaging of cell-laden hydrogels and printed constructs. <i>Acta Biomaterialia</i> , 2019 , 91, 173-185	10.8	8
1084	Emerging approach in semiconductor photocatalysis: Towards 3D architectures for efficient solar fuels generation in semi-artificial photosynthetic systems. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2019 , 39, 142-160	16.4	27
1083	Tunable solution-processable anodic exfoliated graphene. <i>Applied Materials Today</i> , 2019 , 15, 290-296	6.6	14
1082	Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacryloyl, hyaluronic acid and hyaluronic acid methacryloyl. <i>Biofabrication</i> , 2019 , 11, 035003	10.5	24
1081	Binder-Free Electrodes Derived from Interlayer-Expanded MoS2 Nanosheets on Carbon Cloth with a 3D Porous Structure for Lithium Storage. <i>ChemElectroChem</i> , 2019 , 6, 2338-2343	4.3	16
1080	Engineering the poly(vinyl alcohol)-polyaniline colloids for high-performance waterborne alkyd anticorrosion coating. <i>Applied Surface Science</i> , 2019 , 481, 960-971	6.7	14
1079	High-Performance Graphene-Fiber-Based Neural Recording Microelectrodes. <i>Advanced Materials</i> , 2019 , 31, e1805867	24	72
1078	On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 8838-8848	9.5	115
1077	Engineering of perfusable double-layered vascular structures using contraction of spheroid-embedded hydrogel and electrochemical cell detachment. <i>Journal of Bioscience and Bioengineering</i> , 2019 , 127, 114-120	3.3	3
1076	Using medicolegal data to support safe medical care: A contributing factor coding framework. Journal of Healthcare Risk Management: the Journal of the American Society for Healthcare Risk Management, 2019 , 38, 11-18	0.9	7
1075	Tunable Conducting Polymers: Toward Sustainable and Versatile Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 14321-14340	8.3	50
1074	Patterning and process parameter effects in 3D suspension near-field electrospinning of nanoarrays. <i>Nanotechnology</i> , 2019 , 30, 495301	3.4	6
1073	Real-time Analysis of Electrolytes in Sweat Through a Wearable Sensing Platform. <i>Proceedings</i> (mdpi), 2019 , 15, 14	0.3	2
1072	Electrochemical methods for analysing and controlling charge transfer at the electrode E issue interface. <i>Current Opinion in Electrochemistry</i> , 2019 , 16, 143-148	7.2	8
1071	3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 4496-4510	5.5	11
1070	Bio-Inspired Stretchable and Contractible Tough Fiber by the Hybridization of GO/MWNT/Polyurethane. ACS Applied Materials & amp; Interfaces, 2019, 11, 31162-31168	9.5	10

1069	Bioprinting an Artificial Pancreas for Type 1 Diabetes. <i>Current Diabetes Reports</i> , 2019 , 19, 53	5.6	15
1068	3D Printing for Electrocatalytic Applications. <i>Joule</i> , 2019 , 3, 1835-1849	27.8	45
1067	Insights into the Electron Transfer Kinetics, Capacitance and Resistance Effects of Implantable Electrodes Using Fourier Transform AC Voltammetry on Platinum. <i>Journal of the Electrochemical Society</i> , 2019 , 166, G131-G140	3.9	7
1066	Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. <i>Biomaterials Science</i> , 2019 , 7, 3497-3509	7.4	14
1065	Effect of monophasic pulsed stimulation on live single cell de-adhesion on conducting polymers with adsorbed fibronectin as revealed by single cell force spectroscopy. <i>Biointerphases</i> , 2019 , 14, 02100)3 ^{1.8}	4
1064	3D graphene-containing structures for tissue engineering. <i>Materials Today Chemistry</i> , 2019 , 14, 100199	6.2	17
1063	Biodegradable Conducting Polymer Coating to Mitigate Early Stage Degradation of Magnesium in Simulated Biological Fluid: An Electrochemical Mechanistic Study. <i>ChemElectroChem</i> , 2019 , 6, 4893-490	1 ^{4.3}	O
1062	Self-Healing Electrode with High Electrical Conductivity and Mechanical Strength for Artificial Electronic Skin. <i>ACS Applied Materials & Discrete Sciences</i> , 2019 , 11, 46026-46033	9.5	19
1061	Biomedical Applications of Organic Conducting Polymers 2019 , 783-812		1
1060	Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries.		
	Energy Storage Materials, 2019 , 19, 408-423	19.4	109
1059	Energy Storage Materials, 2019, 19, 408-423 Scalable Solution Processing MoS Powders with Liquid Crystalline Graphene Oxide for Flexible Freestanding Films with High Areal Lithium Storage Capacity. ACS Applied Materials & Capacity Interfaces, 2019, 11, 46746-46755	19.4 9.5	9
1059	Scalable Solution Processing MoS Powders with Liquid Crystalline Graphene Oxide for Flexible Freestanding Films with High Areal Lithium Storage Capacity. ACS Applied Materials & Camp;		
	Scalable Solution Processing MoS Powders with Liquid Crystalline Graphene Oxide for Flexible Freestanding Films with High Areal Lithium Storage Capacity. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 46746-46755 Smart graphene-cellulose paper for 2D or 3D "origami-inspired" human stem cell support and	9.5	9
1058	Scalable Solution Processing MoS Powders with Liquid Crystalline Graphene Oxide for Flexible Freestanding Films with High Areal Lithium Storage Capacity. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 46746-46755 Smart graphene-cellulose paper for 2D or 3D "origami-inspired" human stem cell support and differentiation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 176, 87-95 Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 389-398 Functionalizing graphene with titanate coupling agents as reinforcement for one-component	9.5	9
1058	Scalable Solution Processing MoS Powders with Liquid Crystalline Graphene Oxide for Flexible Freestanding Films with High Areal Lithium Storage Capacity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 46746-46755 Smart graphene-cellulose paper for 2D or 3D "origami-inspired" human stem cell support and differentiation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 176, 87-95 Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 389-398 Functionalizing graphene with titanate coupling agents as reinforcement for one-component waterborne poly(urethane-acrylate) anticorrosion coatings. <i>Chemical Engineering Journal</i> , 2019 ,	9.5	9 20 48
1058 1057 1056	Scalable Solution Processing MoS Powders with Liquid Crystalline Graphene Oxide for Flexible Freestanding Films with High Areal Lithium Storage Capacity. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2019 , 11, 46746-46755 Smart graphene-cellulose paper for 2D or 3D "origami-inspired" human stem cell support and differentiation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 176, 87-95 Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 389-398 Functionalizing graphene with titanate coupling agents as reinforcement for one-component waterborne poly(urethane-acrylate) anticorrosion coatings. <i>Chemical Engineering Journal</i> , 2019 , 359, 331-343 Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Islet-Containing	9.5 6 21.8	9 20 48 46
1058 1057 1056	Scalable Solution Processing MoS Powders with Liquid Crystalline Graphene Oxide for Flexible Freestanding Films with High Areal Lithium Storage Capacity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019, 11, 46746-46755 Smart graphene-cellulose paper for 2D or 3D "origami-inspired" human stem cell support and differentiation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019, 176, 87-95 Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. <i>Applied Catalysis B: Environmental</i> , 2019, 245, 389-398 Functionalizing graphene with titanate coupling agents as reinforcement for one-component waterborne poly(urethane-acrylate) anticorrosion coatings. <i>Chemical Engineering Journal</i> , 2019, 359, 331-343 Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Islet-Containing Constructs. <i>Advanced Healthcare Materials</i> , 2019, 8, e1801181	9.5 6 21.8 14.7	9 20 48 46 34

1051	Engineering Human Neural Tissue by 3D Bioprinting. <i>Methods in Molecular Biology</i> , 2018 , 1758, 129-138	1.4	16
1050	Wearable Platform for Real-time Monitoring of Sodium in Sweat. <i>ChemPhysChem</i> , 2018 , 19, 1531-1536	3.2	26
1049	An Electrosynthesized 3D Porous Molybdenum Sulfide/Graphene Film with Enhanced Electrochemical Performance for Lithium Storage. <i>Small</i> , 2018 , 14, 1703096	11	21
1048	Magnetorheological technology for fabricating tunable solid electrolyte with enhanced conductivity and mechanical property. <i>Smart Materials and Structures</i> , 2018 , 27, 035022	3.4	5
1047	Development and Characterization of a Sucrose Microneedle Neural Electrode Delivery System. <i>Advanced Biology</i> , 2018 , 2, 1700187	3.5	18
1046	Electrochemical and Electrostatic Cleavage of Alkoxyamines. <i>Journal of the American Chemical Society</i> , 2018 , 140, 766-774	16.4	88
1045	Three-Dimensional Printing and Cell Therapy for Wound Repair. Advances in Wound Care, 2018, 7, 145-1	5 458	27
1044	Tunable and Efficient Tin Modified Nitrogen-Doped Carbon Nanofibers for Electrochemical Reduction of Aqueous Carbon Dioxide. <i>Advanced Energy Materials</i> , 2018 , 8, 1702524	21.8	170
1043	Towards thermally stable high performance lithium-ion batteries: the combination of a phosphonium cation ionic liquid and a 3D porous molybdenum disulfide/graphene electrode. <i>Chemical Communications</i> , 2018 , 54, 5338-5341	5.8	8
1042	Variation and Likeness in Ambient Artistic Portraiture. <i>Perception</i> , 2018 , 47, 585-607	1.2	3
1041	Measuring the effective area and charge density of platinum electrodes for bionic devices. <i>Journal of Neural Engineering</i> , 2018 , 15, 046015	5	20
1040	Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing. <i>Advanced Functional Materials</i> , 2018 , 28, 1706592	15.6	112
1039	PEDOT doped with algal, mammalian and synthetic dopants: polymer properties, protein and cell interactions, and influence of electrical stimulation on neuronal cell differentiation. <i>Biomaterials Science</i> , 2018 , 6, 1250-1261	7.4	19
1038	In situ handheld three-dimensional bioprinting for cartilage regeneration. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, 611-621	4.4	155
1037	Organic Electrodes and Communications with Excitable Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1700587	15.6	33
1036	Three-dimensional neural cultures produce networks that mimic native brain activity. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, 490-493	4.4	20
1035	Alkaline Fuel Cells with Novel Gortex-Based Electrodes are Powered Remarkably Efficiently by Methane Containing 5% Hydrogen. <i>Advanced Energy Materials</i> , 2018 , 8, 1702285	21.8	8
1034	Biomaterials for corneal bioengineering. <i>Biomedical Materials (Bristol)</i> , 2018 , 13, 032002	3.5	52

1033	Gortex-Based Gas Diffusion Electrodes with Unprecedented Resistance to Flooding and Leaking. <i>ACS Applied Materials & Diffusion Electrodes</i> , 2018 , 10, 28176-28186	9.5	11
1032	The Bionic Bra: Using electromaterials to sense and modify breast support to enhance active living. <i>Journal of Rehabilitation and Assistive Technologies Engineering</i> , 2018 , 5, 2055668318775905	1.7	9
1031	Charge Injection from Chronoamperometry of Platinum Electrodes for Bionic Devices. <i>Journal of the Electrochemical Society</i> , 2018 , 165, G3033-G3041	3.9	6
1030	Supercapacitors: Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing (Adv. Funct. Mater. 21/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870142	15.6	18
1029	3D Printed Electrodes for Improved Gas Reactant Transport for Electrochemical Reactions. <i>3D Printing and Additive Manufacturing</i> , 2018 , 5, 215-219	4	5
1028	Fabrication and In Vitro Characterization of Electrochemically Compacted Collagen/Sulfated Xylorhamnoglycuronan Matrix for Wound Healing Applications. <i>Polymers</i> , 2018 , 10,	4.5	18
1027	A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction. <i>Advanced Energy Materials</i> , 2018 , 8, 1801280	21.8	57
1026	A contactless approach for monitoring the mechanical properties of swollen hydrogels. <i>Soft Matter</i> , 2018 , 14, 7228-7236	3.6	5
1025	Biofabrication of human articular cartilage: a path towards the development of a clinical treatment. <i>Biofabrication</i> , 2018 , 10, 045006	10.5	48
1024	Application of terpyridyl ligands to tune the optical and electrochemical properties of a conducting polymer <i>RSC Advances</i> , 2018 , 8, 29505-29512	3.7	3
1023	A "Tandem" Strategy to Fabricate Flexible Graphene/Polypyrrole Nanofiber Film Using the Surfactant-Exfoliated Graphene for Supercapacitors. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 22031-22041	9.5	27
1022	Effect of electrochemical oxidation and reduction on cell de-adhesion at the conducting polymer-live cell interface as revealed by single cell force spectroscopy. <i>Biointerphases</i> , 2018 , 13, 04100	4 ^{.8}	5
1021	Solid-State Poly(ionic liquid) Gels for Simultaneous CO2 Adsorption and Electrochemical Reduction. <i>Energy Technology</i> , 2018 , 6, 702-709	3.5	8
1020	Superelastic Hybrid CNT/Graphene Fibers for Wearable Energy Storage. <i>Advanced Energy Materials</i> , 2018 , 8, 1702047	21.8	126
1019	Conductive Tough Hydrogel for Bioapplications. <i>Macromolecular Bioscience</i> , 2018 , 18, 1700270	5.5	32
1018	Mechanism and kinetics of electrocarboxylation of aromatic ketones in ionic liquid. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 819, 469-473	4.1	1
1017	An electrochemical cell with Gortex-based electrodes capable of extracting pure hydrogen from highly dilute hydrogenthethane mixtures. <i>Energy and Environmental Science</i> , 2018 , 11, 172-184	35.4	12
1016	Recent progress in 2D materials for flexible supercapacitors. <i>Journal of Energy Chemistry</i> , 2018 , 27, 57-7	'2 2	129

1015	CO2 electrolysis in seawater: calcification effect and a hybrid self-powered concept. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23301-23307	13	8
1014	3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 7066-7075	7.3	83
1013	Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology-Barriers to Clinical Translation. <i>Frontiers in Surgery</i> , 2018 , 5, 70	2.3	38
1012	Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance. <i>Nature Communications</i> , 2018 , 9, 5070	17.4	28
1011	Tuning the structure of three dimensional nanostructured molybdenum disulfide/nitrogen-doped carbon composite for high lithium storage. <i>Electrochimica Acta</i> , 2018 , 291, 197-205	6.7	6
1010	Advanced fabrication approaches to controlled delivery systems for epilepsy treatment. <i>Expert Opinion on Drug Delivery</i> , 2018 , 15, 915-925	8	11
1009	A bioprinting printing approach to regenerate cartilage for microtia treatment. <i>Bioprinting</i> , 2018 , 12, e00031	7	7
1008	Thermally Responsive Torsional and Tensile Fiber Actuator Based on Graphene Oxide. <i>ACS Applied Materials & Discourse Materials & Di</i>	9.5	26
1007	Switchable Interfaces: Redox Monolayers on Si(100) by Electrochemical Trapping of Alcohol Nucleophiles. <i>Surfaces</i> , 2018 , 1, 3-11	2.9	12
1006	A smart cyto-compatible asymmetric polypyrrole membrane for salinity power generation. <i>Nano Energy</i> , 2018 , 53, 475-482	17.1	35
1005	Characterization of 3D-Printed Human Regulatory T-Cells. <i>Transplantation</i> , 2018 , 102, S109	1.8	
1004	Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. <i>Advanced Materials</i> , 2018 , 30, e1706665	24	109
1003	Engineering Surface Amine Modifiers of Ultrasmall Gold Nanoparticles Supported on Reduced Graphene Oxide for Improved Electrochemical CO2 Reduction. <i>Advanced Energy Materials</i> , 2018 , 8, 180	1408	76
1002	Electrical Stimulation with a Conductive Polymer Promotes Neurite Outgrowth and Synaptogenesis in Primary Cortical Neurons in 3D. <i>Scientific Reports</i> , 2018 , 8, 9855	4.9	22
1001	Disclosing Adverse Events to Patients: International Norms and Trends. <i>Journal of Patient Safety</i> , 2017 , 13, 43-49	1.9	41
1000	Self-healing characteristic of praseodymium conversion coating on AZNd Mg alloy studied by scanning electrochemical microscopy. <i>Electrochemistry Communications</i> , 2017 , 76, 6-9	5.1	27
999	Local probing of magnetoelectric properties of PVDF/FeO electrospun nanofibers by piezoresponse force microscopy. <i>Nanotechnology</i> , 2017 , 28, 065707	3.4	28
998	High Power Density Electrochemical Thermocells for Inexpensively Harvesting Low-Grade Thermal Energy. <i>Advanced Materials</i> , 2017 , 29, 1605652	24	108

997	A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. <i>Electrochimica Acta</i> , 2017 , 235, 348-355	6.7	63
996	High-performance hybrid carbon nanotube fibers for wearable energy storage. <i>Nanoscale</i> , 2017 , 9, 5063	- 5 0 71	74
995	Effective Area and Charge Density of Iridium Oxide Neural Electrodes. <i>Electrochimica Acta</i> , 2017 , 230, 285-292	6.7	9
994	Rapid formation of self-organised Ag nanosheets with high efficiency and selectivity in CO2 electroreduction to CO. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 1023-1027	5.8	36
993	Electro-mechano responsive properties of gelatin methacrylate (GelMA) hydrogel on conducting polymer electrodes quantified using atomic force microscopy. <i>Soft Matter</i> , 2017 , 13, 4761-4772	3.6	11
992	Metal porphyrin intercalated reduced graphene oxide nanocomposite utilized for electrocatalytic oxygen reduction. <i>Green Energy and Environment</i> , 2017 , 2, 285-293	5.7	17
991	3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700175	10.1	99
990	Functional Electro-materials Based on Ferricyanide Redox-active Ionic Liquids. <i>Electrochimica Acta</i> , 2017 , 245, 934-940	6.7	5
989	Co-deposition of carbon dots and reduced graphene oxide nanosheets on carbon-fiber microelectrode surface for selective detection of dopamine. <i>Applied Surface Science</i> , 2017 , 412, 131-137	6.7	55
988	Self-Assembly of Flexible Free-Standing 3D Porous MoS2-Reduced Graphene Oxide Structure for High-Performance Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1700234	15.6	160
987	Fabrication of 3D structures from graphene-based biocomposites. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 3462-3482	7.3	25
986	Choosing the right nanoparticle size Idesigning novel ZnO electrode architectures for efficient dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7516-7522	13	8
985	Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth of Primary Prefrontal Cortical Neurons from NRG1-KO and DISC1-LI Mice. <i>Scientific Reports</i> , 2017 , 7, 425	1 9	21
984	A Biodegradable Thin-Film Magnesium Primary Battery Using Silk Fibroinlibnic Liquid Polymer Electrolyte. <i>ACS Energy Letters</i> , 2017 , 2, 831-836	20.1	87
983	System and process development for coaxial extrusion in fused deposition modelling. <i>Rapid Prototyping Journal</i> , 2017 , 23, 543-550	3.8	8
982	Evaluation of the Biocompatibility of Polypyrrole Implanted Subdurally in GAERS. <i>Macromolecular Bioscience</i> , 2017 , 17, 1600334	5.5	12
981	3D printable conducting hydrogels containing chemically converted graphene. <i>Nanoscale</i> , 2017 , 9, 2038-	-2<u>.9</u>5 0	39
980	Three-dimensional neuronal cell culture: in pursuit of novel treatments for neurodegenerative disease. MRS Communications, 2017, 7, 320-331	2.7	4

979	In vivo biocompatibility of porous and non-porous polypyrrole based trilayered actuators. <i>Journal of Materials Science: Materials in Medicine</i> , 2017 , 28, 172	4.5	6
978	Quantitative characterisation of conductive fibers by capacitive coupling. <i>Analyst, The</i> , 2017 , 143, 215-2	223	5
977	Development of drug-loaded polymer microcapsules for treatment of epilepsy. <i>Biomaterials Science</i> , 2017 , 5, 2159-2168	7.4	10
976	Composite Photocatalysts Containing BiVO for Degradation of Cationic Dyes. <i>Scientific Reports</i> , 2017 , 7, 8929	4.9	57
975	Magnetoelectric Composites for Bionics Applications 2017 , 171-195		4
974	Implantable electrodes. Current Opinion in Electrochemistry, 2017, 3, 68-74	7.2	13
973	3D-Printed Conical Arrays of TiO2 Electrodes for Enhanced Photoelectrochemical Water Splitting. <i>Advanced Energy Materials</i> , 2017 , 7, 1701060	21.8	48
972	Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair. <i>Scientific Reports</i> , 2017 , 7, 5837	4.9	109
971	Development of a porous 3D graphene-PDMS scaffold for improved osseointegration. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 159, 386-393	6	34
970	High-strength graphene and polyacrylonitrile composite fiber enhanced by surface coating with polydopamine. <i>Composites Science and Technology</i> , 2017 , 149, 280-285	8.6	23
969	Electrotactic ionic liquid droplets. Sensors and Actuators B: Chemical, 2017, 239, 1069-1075	8.5	13
968	Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering. <i>Annals of Biomedical Engineering</i> , 2017 , 45, 1015-1026	4.7	25
967	Reproducible flaws unveil electrostatic aspects of semiconductor electrochemistry. <i>Nature Communications</i> , 2017 , 8, 2066	17.4	47
966	Wearable Sensor for Real-Time Monitoring of Electrolytes in Sweat. <i>Proceedings (mdpi)</i> , 2017 , 1, 724	0.3	
965	Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn for Selective and Sensitive Detection of Dopamine. <i>Sensors</i> , 2017 , 17,	3.8	26
964	Increased upconversion performance for thin film solar cells: a trimolecular composition. <i>Chemical Science</i> , 2016 , 7, 559-568	9.4	67
963	High Performance Fe Porphyrin/Ionic Liquid Co-catalyst for Electrochemical CO2 Reduction. <i>Chemistry - A European Journal</i> , 2016 , 22, 14158-61	4.8	42
962	A Cytocompatible Robust Hybrid Conducting Polymer Hydrogel for Use in a Magnesium Battery. <i>Advanced Materials</i> , 2016 , 28, 9349-9355	24	46

961	Electrical stimulation enhances the acetylcholine receptors available for neuromuscular junction formation. <i>Acta Biomaterialia</i> , 2016 , 45, 328-339	10.8	10
960	Processable 2D materials beyond graphene: MoS liquid crystals and fibres. <i>Nanoscale</i> , 2016 , 8, 16862-1	6 8 67	32
959	Superflexibility of graphene oxide. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 11088-11093	11.5	90
958	A Free-standing Graphene-Polypyrrole Hybrid Paper via Electropolymerization with an Enhanced Areal Capacitance. <i>Electrochimica Acta</i> , 2016 , 212, 561-571	6.7	57
957	Fabrication of a graphene coated nonwoven textile for industrial applications. <i>RSC Advances</i> , 2016 , 6, 73203-73209	3.7	33
956	Tissue engineering with gellan gum. <i>Biomaterials Science</i> , 2016 , 4, 1276-90	7.4	91
955	Effective area and charge density of dextran sulphate doped PEDOT modified electrodes. <i>Synthetic Metals</i> , 2016 , 220, 394-401	3.6	9
954	Brazing techniques for the fabrication of biocompatible carbon-based electronic devices. <i>Carbon</i> , 2016 , 107, 180-189	10.4	12
953	UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 31916-31925	9.5	51
952	Advances in printing biomaterials and living cells: implications for islet cell transplantation. <i>Current Opinion in Organ Transplantation</i> , 2016 , 21, 467-75	2.5	22
951	High-Performance Multifunctional Graphene-PLGA Fibers: Toward Biomimetic and Conducting 3D Scaffolds. <i>Advanced Functional Materials</i> , 2016 , 26, 3105-3117	15.6	38
950	Development and validation of a seizure initiated drug delivery system for the treatment of epilepsy. <i>Sensors and Actuators B: Chemical</i> , 2016 , 236, 732-740	8.5	8
949	Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10710-10718	13	102
948	A novel modified terpyridine derivative as a model molecule to study kinetic-based optical spectroscopic ion determination methods. <i>Synthetic Metals</i> , 2016 , 219, 101-108	3.6	5
947	Cell compatible encapsulation of filaments into 3D hydrogels. <i>Biofabrication</i> , 2016 , 8, 025013	10.5	3
946	BWEATCHEA Wearable Platform for Harvesting and Analysing Sweat Sodium Content. <i>Electroanalysis</i> , 2016 , 28, 1283-1289	3	95
945	Toward Biodegradable MgAir Bioelectric Batteries Composed of Silk Fibroin Polypyrrole Film. <i>Advanced Functional Materials</i> , 2016 , 26, 1454-1462	15.6	74
944	Probing the PEDOT:PSS/cell interface with conductive colloidal probe AFM-SECM. <i>Nanoscale</i> , 2016 , 8, 4475-81	7.7	21

943	3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography. <i>Analytica Chimica Acta</i> , 2016 , 910, 84-94	6.6	55
942	A novel and facile approach to fabricate a conductive and biomimetic fibrous platform with sub-micron and micron features. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 1056-1063	7.3	9
941	A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. <i>Smart Materials and Structures</i> , 2016 , 25, 035015	3.4	33
940	Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. <i>Biofabrication</i> , 2016 , 8, 015019	10.5	136
939	Brain on a bench top. <i>Materials Today</i> , 2016 , 19, 124-125	21.8	2
938	Characterisation of graphene fibres and graphene coated fibres using capacitively coupled contactless conductivity detector. <i>Analyst, The</i> , 2016 , 141, 2774-82	5	12
937	A high energy density solar rechargeable redox battery. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3446	-3452	32
936	Conductive and protein resistant polypyrrole films for dexamethasone delivery. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 2570-2577	7.3	11
935	Effective Area and Charge Density of Chondroitin Sulphate Doped PEDOT Modified Electrodes. <i>Electrochimica Acta</i> , 2016 , 197, 99-106	6.7	8
934	Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 1142-1149	7.3	28
933	Conductive Polymer Hydrogels. Springer Series on Polymer and Composite Materials, 2016, 19-44	0.9	33
932	Synthesis and Characterization of Covalently Linked Graphene/Chitosan Composites. <i>Jom</i> , 2016 , 68, 38	4 2 390	9
931	Porosity of Bleb Capsule declines rapidly with Fluid Challenge. <i>Journal of Current Glaucoma Practice</i> , 2016 , 10, 91-96	1.1	8
930	Antiepileptic Effects of Lacosamide Loaded Polymers Implanted Subdurally in GAERS. <i>International Journal of Polymer Science</i> , 2016 , 2016, 1-10	2.4	1
929	TEMPO Monolayers on Si(100) Electrodes: Electrostatic Effects by the Electrolyte and Semiconductor Space-Charge on the Electroactivity of a Persistent Radical. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9611-9	16.4	44
928	Use of conducting polymers to facilitate neurite branching in schizophrenia-related neuronal development. <i>Biomaterials Science</i> , 2016 , 4, 1244-51	7.4	6
927	Fabrication of novel corellhell PLGA and alginate fiber for dual-drug delivery system. <i>Polymers for Advanced Technologies</i> , 2016 , 27, 1014-1019	3.2	10
926	Fabrication of Coaxial Wet-Spun Graphenethitosan Biofibers. <i>Advanced Engineering Materials</i> , 2016 , 18, 284-293	3.5	32

(2015-2016)

925	Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells. <i>Advanced Healthcare Materials</i> , 2016 , 5, 1429-38	10.1	237
924	Compositional Effects of Large Graphene Oxide Sheets on the Spinnability and Properties of Polyurethane Composite Fibers. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500672	4.6	30
923	Three-dimensional bioprinting speeds up smart regenerative medicine. <i>National Science Review</i> , 2016 , 3, 331-344	10.8	11
922	Inkjet-Printed Alginate Microspheres as Additional Drug Carriers for Injectable Hydrogels. <i>Advances in Polymer Technology</i> , 2016 , 35, 439-446	1.9	6
921	Correlation of impedance and effective electrode area of chondroitin sulphate doped PEDOT modified electrodes. <i>Synthetic Metals</i> , 2016 , 222, 338-343	3.6	3
920	3D Printed Edible Hydrogel Electrodes. MRS Advances, 2016 , 1, 527-532	0.7	8
919	Application of Conducting Polymers in Solar Water-Splitting Catalysis 2016 , 223-251		3
918	Electrostatic catalysis of a Diels-Alder reaction. <i>Nature</i> , 2016 , 531, 88-91	50.4	422
917	Developments in conducting polymer fibres: from established spinning methods toward advanced applications. <i>RSC Advances</i> , 2016 , 6, 44687-44716	3.7	51
916	Correlation of Impedance and Effective Electrode Area of Dextran Sulfate Doped PEDOT Modified Electrodes. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H534-H540	3.9	5
915	Effect of post-spinning on the electrical and electrochemical properties of wet spun graphene fibre. <i>RSC Advances</i> , 2016 , 6, 46427-46432	3.7	6
914	The effect of treatment time on the ionic liquid surface film formation: Promising surface coating for Mg alloy AZ31. <i>Surface and Coatings Technology</i> , 2016 , 296, 192-202	4.4	12
913	Knitted Carbon-Nanotube-Sheath/Spandex-Core Elastomeric Yarns for Artificial Muscles and Strain Sensing. <i>ACS Nano</i> , 2016 , 10, 9129-9135	16.7	147
912	Facile Fabrication of Flexible Microsupercapacitor with High Energy Density. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600166	6.8	35
911	Comparison of inorganic electron transport layers in fully roll-to-roll coated/printed organic photovoltaics in normal geometry. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15986-15996	13	19
910	Stem Cell Bioprinting: Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016). <i>Advanced Healthcare Materials</i> , 2016 , 5, 1428-1428	3 ^{10.1}	9
909	Disorder engineering of undoped TiO2 nanotube arrays for highly efficient solar-driven oxygen evolution. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 5642-9	3.6	21
908	Three-dimensional bio-printing. <i>Science China Life Sciences</i> , 2015 , 58, 411-9	8.5	53

907	A highly nitrogen-doped porous graphene han anode material for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18229-18237	13	79
906	3D printing of layered brain-like structures using peptide modified gellan gum substrates. <i>Biomaterials</i> , 2015 , 67, 264-73	15.6	283
905	Graphite Oxide to Graphene. Biomaterials to Bionics. Advanced Materials, 2015, 27, 7563-82	24	96
904	A Comparison of Chemical and Electrochemical Synthesis of PEDOT:Dextran Sulphate for Bio-Application. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1717, 19		O
903	Flexible Electrodes and Electrolytes for Energy Storage. <i>Electrochimica Acta</i> , 2015 , 175, 87-95	6.7	52
902	Electro-stimulated release from a reduced graphene oxide composite hydrogel. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 2530-2537	7.3	41
901	Soft, Flexible Freestanding Neural Stimulation and Recording Electrodes Fabricated from Reduced Graphene Oxide. <i>Advanced Functional Materials</i> , 2015 , 25, 3551-3559	15.6	91
900	A bio-friendly, green route to processable, biocompatible graphene/polymer composites. <i>RSC Advances</i> , 2015 , 5, 45284-45290	3.7	37
899	Determination of bleb capsule porosity with an experimental glaucoma drainage device and measurement system. <i>JAMA Ophthalmology</i> , 2015 , 133, 549-54	3.9	5
898	Manganese dioxide-anchored three-dimensional nitrogen-doped graphene hybrid aerogels as excellent anode materials for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10403-104	112	84
897	High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide. <i>Environmental Science & Environmental Science & Environm</i>	10.3	183
896	3D braided yarns to create electrochemical cells. <i>Electrochemistry Communications</i> , 2015 , 61, 27-31	5.1	14
895	Nano-Carbon Electrodes for Thermal Energy Harvesting. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 1-14	1.3	109
894	A simple and versatile method for microencapsulation of anti-epileptic drugs for focal therapy of epilepsy. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 7255-7261	7.3	6
893	Next generation bioelectronics: Advances in fabrication coupled with clever chemistries enable the effective integration of biomaterials and organic conductors. <i>APL Materials</i> , 2015 , 3, 014913	5.7	19
892	Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. <i>ACS Applied Materials</i> & Amp; Interfaces, 2015 , 7, 21150-8	9.5	204
891	Probing DonorAcceptor Interactions in meso-Substituted Zn(II) Porphyrins Using Resonance Raman Spectroscopy and Computational Chemistry. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 22379-2	23891	14
890	Functionalised inherently conducting polymers as low biofouling materials. <i>Biofouling</i> , 2015 , 31, 493-50	023.3	10

(2015-2015)

889	Dynamic Electrochemical Properties of Extremely Stretchable Electrochemical Capacitor Using Reduced Graphene Oxide/Single-Wall Carbon Nanotubes Composite. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A2351-A2355	3.9	4
888	Corrosion protection afforded by praseodymium conversion film on Mg alloy AZNd in simulated biological fluid studied by scanning electrochemical microscopy. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 739, 211-217	4.1	28
887	Peptide modification of purified gellan gum. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1106-1115	7.3	36
886	Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS) - a highly processable conductive organic biopolymer. <i>Acta Biomaterialia</i> , 2015 , 14, 33-42	10.8	61
885	Evaluating the corrosion behaviour of Magnesium alloy in simulated biological fluid by using SECM to detect hydrogen evolution. <i>Electrochimica Acta</i> , 2015 , 152, 294-301	6.7	34
884	Enzymatic degradation of graphene/polycaprolactone materials for tissue engineering. <i>Polymer Degradation and Stability</i> , 2015 , 111, 71-77	4.7	55
883	Processable conducting graphene/chitosan hydrogels for tissue engineering. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 481-490	7.3	146
882	Achieving Outstanding Mechanical Performance in Reinforced Elastomeric Composite Fibers Using Large Sheets of Graphene Oxide. <i>Advanced Functional Materials</i> , 2015 , 25, 94-104	15.6	81
881	Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. <i>Tissue Engineering - Part C: Methods</i> , 2015 , 21, 385-93	2.9	122
880	High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. <i>Scientific Reports</i> , 2015 , 5, 17045	4.9	195
879	Novel reversible and switchable electrolytes based on magneto-rheology. <i>Scientific Reports</i> , 2015 , 5, 15663	4.9	6
878	Injectable phenytoin loaded polymeric microspheres for the control of temporal lobe epilepsy in rats. <i>Restorative Neurology and Neuroscience</i> , 2015 , 33, 823-34	2.8	3
877	Quantifying Molecular-Level Cell Adhesion on Electroactive Conducting Polymers using Electrochemical-Single Cell Force Spectroscopy. <i>Scientific Reports</i> , 2015 , 5, 13334	4.9	18
876	Electro-oxidation and reduction of H2 on platinum studied by scanning electrochemical microscopy for the purpose of local detection of H2 evolution. <i>Surface and Interface Analysis</i> , 2015 , 47, 1187-1191	1.5	2
875	Flexible Tuning of Unsaturated Ebubstituents on Zn Porphyrins: A Synthetic, Spectroscopic and Computational Study. <i>Chemistry - A European Journal</i> , 2015 , 21, 15622-32	4.8	8
874	Electrochemically Induced Synthesis of Poly(2,6-carbazole). <i>Macromolecular Rapid Communications</i> , 2015 , 36, 1749-55	4.8	16
873	Development and Characterization of Novel Hybrid Hydrogel Fibers. <i>Macromolecular Materials and Engineering</i> , 2015 , 300, 1217-1225	3.9	27
872	Recent Progress in Flexible Electrochemical Capacitors: Electrode Materials, Device Configuration, and Functions. <i>Advanced Energy Materials</i> , 2015 , 5, 1500959	21.8	183

871	3D Bioprinting of Cartilage for Orthopedic Surgeons: Reading between the Lines. <i>Frontiers in Surgery</i> , 2015 , 2, 39	2.3	66
870	Chemically converted graphene: scalable chemistries to enable processing and fabrication. <i>NPG Asia Materials</i> , 2015 , 7, e186-e186	10.3	57
869	From nanoparticles to fibres: effect of dispersion composition on fibre properties. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	2
868	Ionic Liquid Solvated Polymer Networks for Stretchable Electronics. <i>Polymer-Plastics Technology and Engineering</i> , 2015 , 54, 310-314		6
867	Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain-machine interfaces. <i>Analyst, The</i> , 2015 , 140, 3164-74	5	19
866	Nano-bioelectronics via dip-pen nanolithography. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6431-6444	7.1	22
865	Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. <i>Electrochimica Acta</i> , 2015 , 172, 12-19	6.7	85
864	Coiled polymeric growth factor gradients for multi-luminal neural chemotaxis. <i>Brain Research</i> , 2015 , 1619, 72-83	3.7	7
863	The potential of induced pluripotent stem cells in models of neurological disorders: implications on future therapy. <i>Expert Review of Neurotherapeutics</i> , 2015 , 15, 295-304	4.3	12
862	A facile approach for fabrication of mechanically strong graphene/polypyrrole films with large areal capacitance for supercapacitor applications. <i>RSC Advances</i> , 2015 , 5, 102643-102651	3.7	35
861	Phase-controlled microwave synthesis of pure monoclinic BiVO4 nanoparticles for photocatalytic dye degradation. <i>Applied Materials Today</i> , 2015 , 1, 67-73	6.6	25
860	Conductive surfaces with dynamic switching in response to temperature and salt. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 9285-9294	7.3	25
859	Flexible free-standing graphene paper with interconnected porous structure for energy storage. Journal of Materials Chemistry A, 2015 , 3, 4428-4434	13	46
858	Decoloration rates of a photomerocyanine dye as a visual probe into hydrogen bonding interactions. <i>Chemical Communications</i> , 2015 , 51, 4815-8	5.8	5
857	Highly stretchable reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes for energy storage devices. <i>Electrochimica Acta</i> , 2015 , 163, 149-160	6.7	33
856	Influence of biopolymer loading on the physiochemical and electrochemical properties of inherently conducting polymer biomaterials. <i>Synthetic Metals</i> , 2015 , 200, 40-47	3.6	8
855	Optical and electrochemical methods for determining the effective area and charge density of conducting polymer modified electrodes for neural stimulation. <i>Analytical Chemistry</i> , 2015 , 87, 738-46	7.8	21
854	A simple one step process for enhancement of titanium foil dye sensitised solar cell anodes. Journal of Materials Chemistry A, 2015 , 3, 3266-3270	13	4

853	Conducting Polymer Fibers 2015 , 31-62		7
852	Fully roll-to-roll gravure printable wireless (13.56 MHz) sensor-signage tags for smart packaging. <i>Scientific Reports</i> , 2014 , 4, 5387	4.9	73
851	Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 793-799	7.3	57
850	Graphene oxide dispersions: tuning rheology to enable fabrication. <i>Materials Horizons</i> , 2014 , 1, 326-331	14.4	223
849	Artificial muscles from fishing line and sewing thread. <i>Science</i> , 2014 , 343, 868-72	33.3	724
848	Vapour phase polymerisation of conducting and non-conducting polymers: a review. <i>Talanta</i> , 2014 , 119, 133-43	6.2	69
847	Liquid ink deposition from an atomic force microscope tip: deposition monitoring and control of feature size. <i>Langmuir</i> , 2014 , 30, 2712-21	4	40
846	Capacitive behaviour of thermally reduced graphene oxide in a novel ionic liquid containing di-cationic charge. <i>Synthetic Metals</i> , 2014 , 193, 110-116	3.6	23
845	New insights into the analysis of the electrode kinetics of flavin adenine dinucleotide redox center of glucose oxidase immobilized on carbon electrodes. <i>Langmuir</i> , 2014 , 30, 3264-73	4	20
844	Applications of scanning electrochemical microscopy (SECM) for local characterization of AZ31 surface during corrosion in a buffered media. <i>Corrosion Science</i> , 2014 , 86, 93-100	6.8	61
843	Photo-chemopropulsionlight-stimulated movement of microdroplets. <i>Advanced Materials</i> , 2014 , 26, 7339-45	24	50
842	Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20382-20392	13	19
841	An Advanced Mathematical Model and its Experimental Verification for Trilayer Conjugated Polymer Actuators. <i>IEEE/ASME Transactions on Mechatronics</i> , 2014 , 19, 1279-1288	5.5	12
840	3D printed metal columns for capillary liquid chromatography. <i>Analyst, The</i> , 2014 , 139, 6343-7	5	76
839	Ink-on-probe hydrodynamics in atomic force microscope deposition of liquid inks. <i>Small</i> , 2014 , 10, 3717	-28	20
838	Performance enhancement of single-walled nanotubefhicrowave exfoliated graphene oxide composite electrodes using a stacked electrode configuration. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14835-14843	13	14
837	Graphene cryogel papers with enhanced mechanical strength for high performance lithium battery anodes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1325-1331	13	36
836	A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 13093-13102	13	195

835	Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. <i>Carbon</i> , 2014 , 79, 554-562	10.4	92
834	3-dimensional (3D) fabricated polymer based drug delivery systems. <i>Journal of Controlled Release</i> , 2014 , 193, 27-34	11.7	99
833	A novel codoping approach for enhancing the performance of polypyrrole cathode in a bioelectric battery. <i>Carbon</i> , 2014 , 80, 691-697	10.4	1
832	One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery. <i>ACS Applied Materials & amp; Interfaces, 2014</i> , 6, 16679-86	9.5	52
831	Thin, tough, pH-sensitive hydrogel films with rapid load recovery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 4109-14	9.5	73
830	Differentiation of stem cells from human infrapatellar fat pad: characterization of cells undergoing chondrogenesis. <i>Tissue Engineering - Part A</i> , 2014 , 20, 2213-23	3.9	22
829	Vapor Phase Synthesis of Conducting Polymer Nanocomposites Incorporating 2D Nanoparticles. <i>Chemistry of Materials</i> , 2014 , 26, 4207-4213	9.6	25
828	Maintaining Cytocompatibility of Biopolymers Through a Graphene Layer for Electrical Stimulation of Nerve Cells. <i>Advanced Functional Materials</i> , 2014 , 24, 769-776	15.6	36
827	High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. <i>Nature Communications</i> , 2014 , 5, 3928	17.4	117
826	Capacitive behavior of latex/single-wall carbon nanotube stretchable electrodes. <i>Electrochimica Acta</i> , 2014 , 137, 372-380	6.7	18
825	High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. <i>ACS Nano</i> , 2014 , 8, 2456-66	16.7	290
824	Integrating a triplet-triplet annihilation up-conversion system to enhance dye-sensitized solar cell response to sub-bandgap light. <i>Journal of Visualized Experiments</i> , 2014 , 52028	1.6	2
823	A method for systematic electrochemical and electrophysiological evaluation of neural recording electrodes. <i>Journal of Visualized Experiments</i> , 2014 ,	1.6	2
822	Recent advances in nerve tissue engineering. International Journal of Artificial Organs, 2014, 37, 277-91	1.9	40
821	Ionic electroactive polymer artificial muscles in space applications. <i>Scientific Reports</i> , 2014 , 4, 6913	4.9	48
820	Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold. <i>PLoS ONE</i> , 2014 , 9, e99410	3.7	78
819	Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering. <i>Biofabrication</i> , 2014 , 6, 025002	10.5	30
818	Automated quantification of neurite outgrowth orientation distributions on patterned surfaces. Journal of Neural Engineering, 2014, 11, 046006	5	4

817	Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. <i>International Journal of Molecular Sciences</i> , 2014 , 15, 11878-921	6.3	239
816	Highly Conductive Carbon Nanotube-Graphene Hybrid Yarn. <i>Advanced Functional Materials</i> , 2014 , 24, 5859-5865	15.6	95
815	Sensors: Strain-Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity (Adv. Funct. Mater. 20/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 3104-310	4 ^{15.6}	2
814	Biocompatible ionic liquid-biopolymer electrolyte-enabled thin and compact magnesium-air batteries. ACS Applied Materials & amp; Interfaces, 2014, 6, 21110-7	9.5	68
813	Strain-Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity. <i>Advanced Functional Materials</i> , 2014 , 24, 2957-2966	15.6	193
812	Influence of Biodopants on PEDOT Biomaterial Polymers: Using QCM-D to Characterize Polymer Interactions with Proteins and Living Cells. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1300122	4.6	42
811	Can the WetBtate Conductivity of Hydrogels be Improved by Incorporation of Spherical Conducting Nanoparticles?. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1717, 1		
810	Formation and processability of liquid crystalline dispersions of graphene oxide. <i>Materials Horizons</i> , 2014 , 1, 87-91	14.4	95
809	Three dimensional (3D) printed electrodes for interdigitated supercapacitors. <i>Electrochemistry Communications</i> , 2014 , 41, 20-23	5.1	150
808	Anhydrous organic dispersions of highly reduced chemically converted graphene. <i>Carbon</i> , 2014 , 76, 368	3- 3 774	23
807	Conducting Polymer Fibers 2014 , 1-27		1
806	Surface and Biomolecular Forces of Conducting Polymers. <i>Polymer Reviews</i> , 2013 , 53, 506-526	14	25
805	Facile synthesis of reduced graphene oxide/MWNTs nanocomposite supercapacitor materials tested as electrophoretically deposited films on glassy carbon electrodes. <i>Journal of Applied Electrochemistry</i> , 2013 , 43, 865-877	2.6	15
804	Polypyrrole as cathode materials for Zn-polymer battery with various biocompatible aqueous electrolytes. <i>Electrochimica Acta</i> , 2013 , 95, 212-217	6.7	26
803	Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. <i>Carbon</i> , 2013 , 52, 296-304	10.4	193
802	Extrusion printing of ionic-covalent entanglement hydrogels with high toughness. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 4939-4946	7:3	133
801	Carbon nanohorns as integrative materials for efficient dye-sensitized solar cells. <i>Advanced Materials</i> , 2013 , 25, 6513-8	24	39

799	Evaluation of encapsulating coatings on the performance of polypyrrole actuators. <i>Smart Materials and Structures</i> , 2013 , 22, 075005	3.4	24
798	Carbon nanotubes induced gelation of unmodified hyaluronic acid. <i>Langmuir</i> , 2013 , 29, 10247-53	4	12
797	Biofunctionalized anti-corrosive silane coatings for magnesium alloys. <i>Acta Biomaterialia</i> , 2013 , 9, 8671	-7 10.8	89
796	PEGylation of platinum bio-electrodes. <i>Electrochemistry Communications</i> , 2013 , 27, 54-58	5.1	12
795	Engineering a multimodal nerve conduit for repair of injured peripheral nerve. <i>Journal of Neural Engineering</i> , 2013 , 10, 016008	5	54
794	Surface modification of polypyrrole/biopolymer composites for controlled protein and cellular adhesion. <i>Biofouling</i> , 2013 , 29, 1155-67	3.3	17
793	A nonconjugated bridge in dimer-sensitized solar cells retards charge recombination without decreasing charge injection efficiency. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 10824-9	9.5	12
792	High strain stretchable solid electrolytes. <i>Electrochemistry Communications</i> , 2013 , 32, 47-50	5.1	45
791	Synthesis and optimization of PEDOT:PSS based ink for printing nanoarrays using Dip-Pen Nanolithography. <i>Synthetic Metals</i> , 2013 , 181, 64-71	3.6	9
790	Microstructures of conducting polymers: Patterning and actuation study. <i>Sensors and Actuators A: Physical</i> , 2013 , 197, 106-110	3.9	3
7 ⁸ 9	Colour tunable electrochromic devices based on PProDOT-(Hx)2 and PProDOT-(EtHx)2 polymers. Journal of Materials Chemistry C, 2013 , 1, 7430	7.1	7
788	Wet-spinning of PEDOT:PSS/functionalized-SWNTs composite: a facile route toward production of strong and highly conducting multifunctional fibers. <i>Scientific Reports</i> , 2013 , 3, 3438	4.9	52
787	Optical switching of protein interactions on photosensitive-electroactive polymers measured by atomic force microscopy. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2162-2168	7-3	9
786	Graphene Oxide: Scalable One-Step Wet-Spinning of Graphene Fibers and Yarns from Liquid Crystalline Dispersions of Graphene Oxide: Towards Multifunctional Textiles (Adv. Funct. Mater. 43/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 5344-5344	15.6	5
785	The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. <i>Energy and Environmental Science</i> , 2013 , 6, 1291	35.4	110
7 ⁸ 4	Polypyrrole doped with redox-active poly(2-methoxyaniline-5-sulfonic acid) for lithium secondary batteries. <i>RSC Advances</i> , 2013 , 3, 5447	3.7	20
783	In vitro growth and differentiation of primary myoblasts on thiophene based conducting polymers. <i>Biomaterials Science</i> , 2013 , 1, 983-995	7.4	13
782	Flexible cellulose based polypyrrolefhultiwalled carbon nanotube films for bio-compatible zinc batteries activated by simulated body fluids. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14300	13	27

781	Pathological Gait Detection of Parkinson's Disease Using Sparse Representation 2013,		12
78o	Bio-ink for on-demand printing of living cells. <i>Biomaterials Science</i> , 2013 , 1, 224-230	7.4	153
779	Polypyrrole stretchable actuators. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2013 , 51, 57-63	2.6	15
778	Comparative displacement study of bilayer actuators comprising of conducting polymers, fabricated from polypyrrole, poly(3,4-ethylenedioxythiophene) or poly(3,4-propylenedioxythiophene). <i>Sensors and Actuators A: Physical</i> , 2013 , 193, 48-53	3.9	16
777	Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor. <i>Electrochimica Acta</i> , 2013 , 113, 17-22	6.7	43
776	Extrusion Printed Graphene/Polycaprolactone/Composites for Tissue Engineering. <i>Materials Science Forum</i> , 2013 , 773-774, 496-502	0.4	16
775	Conducting polymer coated neural recording electrodes. <i>Journal of Neural Engineering</i> , 2013 , 10, 01600	045	84
774	Electrically conductive coatings of nickel and polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) on nylon Lycrall textiles. <i>Progress in Organic Coatings</i> , 2013 , 76, 1296-1301	4.8	22
773	The effect of dopant pKa and the solubility of corresponding acid on the electropolymerisation of pyrrole. <i>Electrochimica Acta</i> , 2013 , 92, 276-284	6.7	6
772	Modified gellan gum hydrogels for tissue engineering applications. <i>Soft Matter</i> , 2013 , 9, 3705	3.6	102
771	Ionic-covalent entanglement hydrogels from gellan gum, carrageenan and an epoxy-amine. <i>Soft Matter</i> , 2013 , 9, 3009	3.6	70
770	Cell attachment and proliferation on high conductivity PEDOT-glycol composites produced by vapour phase polymerisation. <i>Biomaterials Science</i> , 2013 , 1, 368-378	7.4	24
769	Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. <i>ACS Nano</i> , 2013 , 7, 3981-90	16.7	191
768	Multifunctional conducting fibres with electrically controlled release of ciprofloxacin. <i>Journal of Controlled Release</i> , 2013 , 169, 313-20	11.7	95
767	Quantifying fibronectin adhesion with nanoscale spatial resolution on glycosaminoglycan doped polypyrrole using Atomic Force Microscopy. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2013 , 1830, 4305-13	4	8
766	Preparation and characterisation of graphene composite hydrogels. Synthetic Metals, 2013, 168, 36-42	3.6	9
765	Resolving sub-molecular binding and electrical switching mechanisms of single proteins at electroactive conducting polymers. <i>Small</i> , 2013 , 9, 393-401	11	24
764	Novel nanographene/porphyrin hybrids [preparation, characterization, and application in solar energy conversion schemes. <i>Chemical Science</i> , 2013 , 4, 3085	9.4	55

763	Controlled delivery for neuro-bionic devices. Advanced Drug Delivery Reviews, 2013, 65, 559-69	18.5	43
762	Aqueous dispersions of reduced graphene oxide and multi wall carbon nanotubes for enhanced glucose oxidase bioelectrode performance. <i>Carbon</i> , 2013 , 61, 467-475	10.4	33
761	Cation Exchange at Semiconducting Oxide Surfaces: Origin of Light-Induced Performance Increases in Porphyrin Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 11885-11898	3.8	18
760	A light-assisted, polymeric water oxidation catalyst that selectively oxidizes seawater with a low onset potential. <i>Chemical Science</i> , 2013 , 4, 2797	9.4	21
759	Surface properties and interaction forces of biopolymer-doped conductive polypyrrole surfaces by atomic force microscopy. <i>Langmuir</i> , 2013 , 29, 6099-108	4	20
758	Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. <i>Nature Communications</i> , 2013 , 4, 1970	17.4	429
757	Bioengineering of articular cartilage: past, present and future. <i>Regenerative Medicine</i> , 2013 , 8, 333-49	2.5	25
756	Scalable One-Step Wet-Spinning of Graphene Fibers and Yarns from Liquid Crystalline Dispersions of Graphene Oxide: Towards Multifunctional Textiles. <i>Advanced Functional Materials</i> , 2013 , 23, 5345-53	5 ^{45.6}	303
755	A merocyanine-based conductive polymer. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3913	7.1	12
754	Biofabrication: an overview of the approaches used for printing of living cells. <i>Applied Microbiology and Biotechnology</i> , 2013 , 97, 4243-58	5.7	180
753	Bio-ink properties and printability for extrusion printing living cells. <i>Biomaterials Science</i> , 2013 , 1, 763-7	7 ,3 .4	371
75 ²	Manganositefhicrowave exfoliated graphene oxide composites for asymmetric supercapacitor device applications. <i>Electrochimica Acta</i> , 2013 , 101, 99-108	6.7	75
75 ¹	Dye-Sensitized Solar Cell with Integrated Triplet-Triplet Annihilation Upconversion System. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2073-8	6.4	139
75°	Levetiracetam-loaded biodegradable polymer implants in the tetanus toxin model of temporal lobe epilepsy in rats. <i>Journal of Clinical Neuroscience</i> , 2013 , 20, 148-52	2.2	11
749	Carbon nanotube - reduced graphene oxide composites for thermal energy harvesting applications. <i>Advanced Materials</i> , 2013 , 25, 6602-6	24	130
748	Tensile testing of individual glassy, rubbery and hydrogel electrospun polymer nanofibres to high strain using the atomic force microscope. <i>Polymer Testing</i> , 2013 , 32, 655-664	4.5	16
747	Nanoscale platinum printing on insulating substrates. <i>Nanotechnology</i> , 2013 , 24, 505301	3.4	8
746	Incorporating Biodopants into PEDOT Conducting Polymers: Impact of Biodopant on polymer properties and biocompatibility. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1569, 225-230		5

(2012-2013)

745	Disclosure of adverse events in the United States and Canada: an update, and a proposed framework for improvement. <i>Journal of Public Health Research</i> , 2013 , 2, e32	2.2	57
744	Development of a Coaxial Melt Extrusion Printing process for specialised composite bioscaffold fabrication 2013 ,		5
743	Extrusion printed polymer structures: a facile and versatile approach to tailored drug delivery platforms. <i>International Journal of Pharmaceutics</i> , 2012 , 422, 254-63	6.5	61
742	Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. <i>Electrochimica Acta</i> , 2012 , 60, 201-205	6.7	55
741	Novel composite graphene/platinum electro-catalytic electrodes prepared by electrophoretic deposition from colloidal solutions. <i>Electrochimica Acta</i> , 2012 , 60, 213-223	6.7	44
740	Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. <i>Electrochimica Acta</i> , 2012 , 68, 18-24	6.7	179
739	Indigo carmine (IC) doped polypyrrole (PPy) as a free-standing polymer electrode for lithium secondary battery application. <i>Solid State Ionics</i> , 2012 , 215, 29-35	3.3	27
738	In vivo biocompatibility and in vitro characterization of poly-lactide-co-glycolide structures containing levetiracetam, for the treatment of epilepsy. <i>Journal of Biomedical Materials Research - Part A</i> , 2012 , 100, 424-31	5.4	5
737	A porphyrin-doped polymer catalyzes selective, light-assisted water oxidation in seawater. Angewandte Chemie - International Edition, 2012 , 51, 1907-10	16.4	33
736	Supercapacitive properties of polyaniline/hydrous RuO2 composite electrode. <i>Polymer Bulletin</i> , 2012 , 68, 553-560	2.4	13
735	Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. <i>Chemical Communications</i> , 2012 , 48, 4145-62	5.8	197
734	Exploiting high quality PEDOT:PSSBWNT composite formulations for wet-spinning multifunctional fibers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 25174		51
733	Novel carbon materials for thermal energy harvesting. <i>Journal of Thermal Analysis and Calorimetry</i> , 2012 , 109, 1229-1235	4.1	40
732	Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device. <i>Energy and Environmental Science</i> , 2012 , 5, 9472	35.4	153
731	Actuating individual electrospun hydrogel nanofibres. Soft Matter, 2012, 8, 8082	3.6	19
730	Vapor phase polymerization of EDOT from submicrometer scale oxidant patterned by dip-pen nanolithography. <i>Langmuir</i> , 2012 , 28, 9953-60	4	27
729	Liquid deposition patterning of conducting polymer ink onto hard and soft flexible substrates via dip-pen nanolithography. <i>Langmuir</i> , 2012 , 28, 804-11	4	43
728	Attractive and repulsive interactions originating from lateral nanometer variations in surface charge/energy of hyaluronic acid and chondroitin sulfate doped polypyrrole observed using atomic force microscopy. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 13498-505	3.4	8

727	Investigations into the electrochemical characteristics of nickel oxide hydroxide/multi-walled carbon nanotube nanocomposites for use as supercapacitor electrodes. <i>Synthetic Metals</i> , 2012 , 161, 2641-2646	3.6	24
726	Charge storage in carbon nanotubelliO2 hybrid nanoparticles. <i>Synthetic Metals</i> , 2012 , 162, 650-654	3.6	6
725	A battery composed of a polypyrrole cathode and a magnesium alloy anodelloward a bioelectric battery. <i>Synthetic Metals</i> , 2012 , 162, 584-589	3.6	36
724	Inkjet printed polypyrrole/collagen scaffold: A combination of spatial control and electrical stimulation of PC12 cells. <i>Synthetic Metals</i> , 2012 , 162, 1375-1380	3.6	48
723	Hydrophobic conducting polymer films from post deposition thiol exposure. <i>Synthetic Metals</i> , 2012 , 162, 1464-1470	3.6	15
722	Liquid Crystallinity and Dimensions of Surfactant-Stabilized Sheets of Reduced Graphene Oxide. Journal of Physical Chemistry Letters, 2012 , 3, 2425-30	6.4	58
721	Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode. <i>Acta Biomaterialia</i> , 2012 , 8, 2538-48	10.8	36
720	Insights into the cut edge corrosion of 55% AllIn metal coating on steel from simultaneous electrochemical polarization and localised pH sensing experiments. <i>Corrosion Science</i> , 2012 , 55, 180-186	56.8	16
719	Electrical stimulation of myoblast proliferation and differentiation on aligned nanostructured conductive polymer platforms. <i>Advanced Healthcare Materials</i> , 2012 , 1, 801-8	10.1	55
718	Direct exfoliation of graphite with a porphyrincreating functionalizable nanographene hybrids. <i>Chemical Communications</i> , 2012 , 48, 8745-7	5.8	51
717	Fibronectin and bovine serum albumin adsorption and conformational dynamics on inherently conducting polymers: a QCM-D study. <i>Langmuir</i> , 2012 , 28, 8433-45	4	116
716	Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application. <i>ACS Nano</i> , 2012 , 6, 327-34	16.7	72
715	Polymeric Material with Metal-Like Conductivity for Next Generation Organic Electronic Devices. <i>Chemistry of Materials</i> , 2012 , 24, 3998-4003	9.6	202
714	Electrically Conductive, Tough Hydrogels with pH Sensitivity. <i>Chemistry of Materials</i> , 2012 , 24, 3425-343	3 9.6	108
713	All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. <i>Electrochimica Acta</i> , 2012 , 83, 209-215	6.7	47
712	Modelling trilayer conjugated polymer actuators for their sensorless position control. <i>Sensors and Actuators A: Physical</i> , 2012 , 185, 82-91	3.9	32
711	Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. <i>Nature Communications</i> , 2012 , 3, 650	17.4	322
710	Medical Bionics 2012 , 1-39		

709	Organic Conducting Polymers 2012 , 81-112		5
708	Materials Processing/Device Fabrication 2012 , 151-210		
707	Carbon 2012 , 41-79		
706	Organic Conductors (Biological Applications 2012 , 113-150		
705	Organic Bionics IWhere are we? Where do we go now? 2012 , 211-220		
704	Electrodeposition of pyrrole and 3-(4-tert-butylphenyl)thiophene copolymer for supercapacitor applications. <i>Synthetic Metals</i> , 2012 , 162, 2216-2221	3.6	31
703	Organic Conducting Polymer P rotein Interactions. <i>Chemistry of Materials</i> , 2012 , 24, 828-839	9.6	72
702	The effect of reduced graphene oxide addition on the superconductivity of MgB2. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13941		37
701	The role of unbound oligomers in the nucleation and growth of electrodeposited polypyrrole and method for preparing high strength, high conductivity films. <i>Langmuir</i> , 2012 , 28, 10891-7	4	22
700	Towards Hydrogen Energy: Progress on Catalysts for Water Splitting. <i>Australian Journal of Chemistry</i> , 2012 , 65, 577	1.2	19
699	Preparation and characterization of hybrid conducting polymer-carbon nanotube yarn. <i>Nanoscale</i> , 2012 , 4, 940-5	7.7	49
698	A pH-sensitive, strong double-network hydrogel: Poly(ethylene glycol) methyl ether methacrylatespoly(acrylic acid). <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 423-430	2.6	50
697	Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11347		50
696	Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. <i>Nanotechnology</i> , 2012 , 23, 085201	3.4	125
695	Organic Bionics: A New Dimension in Neural Communications. <i>Advanced Functional Materials</i> , 2012 , 22, 2003-2014	15.6	52
694	A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering. <i>Advanced Functional Materials</i> , 2012 , 22, 2692-2699	15.6	231
693	Electrically Induced Disassembly of Electroactive Multilayer Films Fabricated from Water Soluble Polythiophenes. <i>Advanced Functional Materials</i> , 2012 , 22, 5020-5027	15.6	17
692	Electrochemically Synthesized Polypyrrole/Graphene Composite Film for Lithium Batteries. Advanced Energy Materials, 2012, 2, 266-272	21.8	137

691	A Porphyrin-Doped Polymer Catalyzes Selective, Light-Assisted Water Oxidation in Seawater. <i>Angewandte Chemie</i> , 2012 , 124, 1943-1946	3.6	11
690	Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode. <i>ChemSusChem</i> , 2012 , 5, 1233-40	8.3	12
689	Physicochemical study of spiropyran-terthiophene derivatives: photochemistry and thermodynamics. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 9112-20	3.6	11
688	Nanobionics: the impact of nanotechnology on implantable medical bionic devices. <i>Nanoscale</i> , 2012 , 4, 4327-47	7.7	58
687	Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole. <i>Acta Biomaterialia</i> , 2012 , 8, 194-200	10.8	53
686	Novel methods of antiepileptic drug delivery polymer-based implants. <i>Advanced Drug Delivery Reviews</i> , 2012 , 64, 953-64	18.5	45
685	On corrosion behaviour of magnesium alloy AZ31 in simulated body fluids and influence of ionic liquid pretreatments. <i>Corrosion Engineering Science and Technology</i> , 2012 , 47, 374-382	1.7	19
684	Self-Assembled Gels from Biological and Synthetic Polyelectrolytes <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1418, 51		
683	2012,		21
682	A reactive wet spinning approach to polypyrrole fibres. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6421		45
682 681	A reactive wet spinning approach to polypyrrole fibres. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6421 A multiswitchable poly(terthiophene) bearing a spiropyran functionality: understanding photo- and electrochemical control. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5453-62	16.4	
	A multiswitchable poly(terthiophene) bearing a spiropyran functionality: understanding photo- and	16.4	
681	A multiswitchable poly(terthiophene) bearing a spiropyran functionality: understanding photo- and electrochemical control. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5453-62 Determining the orientation and molecular packing of organic dyes on a TiO2 surface using X-ray		86
681 680	A multiswitchable poly(terthiophene) bearing a spiropyran functionality: understanding photo- and electrochemical control. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5453-62 Determining the orientation and molecular packing of organic dyes on a TiO2 surface using X-ray reflectometry. <i>Langmuir</i> , 2011 , 27, 12944-50 Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device		86 54
681 680 679	A multiswitchable poly(terthiophene) bearing a spiropyran functionality: understanding photo- and electrochemical control. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5453-62 Determining the orientation and molecular packing of organic dyes on a TiO2 surface using X-ray reflectometry. <i>Langmuir</i> , 2011 , 27, 12944-50 Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15987 Sodium fluoride-assisted modulation of anodized TiOIhanotube for dye-sensitized solar cells	4	8654174
681 680 679	A multiswitchable poly(terthiophene) bearing a spiropyran functionality: understanding photo- and electrochemical control. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5453-62 Determining the orientation and molecular packing of organic dyes on a TiO2 surface using X-ray reflectometry. <i>Langmuir</i> , 2011 , 27, 12944-50 Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15987 Sodium fluoride-assisted modulation of anodized TiOlhanotube for dye-sensitized solar cells application. <i>ACS Applied Materials & Description Americal Science</i> , 2011 , 3, 1585-93 An erodible polythiophene-based composite for biomedical applications. <i>Journal of Materials</i>	4	865417439
681 680 679 678	A multiswitchable poly(terthiophene) bearing a spiropyran functionality: understanding photo- and electrochemical control. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5453-62 Determining the orientation and molecular packing of organic dyes on a TiO2 surface using X-ray reflectometry. <i>Langmuir</i> , 2011 , 27, 12944-50 Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15987 Sodium fluoride-assisted modulation of anodized TiOIhanotube for dye-sensitized solar cells application. <i>ACS Applied Materials & Des Amp; Interfaces</i> , 2011 , 3, 1585-93 An erodible polythiophene-based composite for biomedical applications. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5555 Domain wall conductivity in oxygen deficient multiferroic YMnO3 single crystals. <i>Applied Physics</i>	9.5	86541743975

673	A flexible capacitor based on conducting polymer electrodes. Synthetic Metals, 2011, 161, 1130-1132	3.6	53
672	Synthesis of polypyrroleNafion composite films by gas phase electroformation. <i>Synthetic Metals</i> , 2011 , 161, 1682-1685	3.6	3
671	Measurement of free Cu ion activity in seawater using a passive-equilibrium sonic-assisted free ion recorder (SAFIR). <i>Environmental Science & Environmental Science & Environ</i>	10.3	4
670	Direct sub-micrometer patterning of nanostructured conducting polymer films via a low-energy infrared laser. <i>Nano Letters</i> , 2011 , 11, 3128-35	11.5	26
669	Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2671		41
668	Torsional carbon nanotube artificial muscles. <i>Science</i> , 2011 , 334, 494-7	33.3	407
667	A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb. <i>Chemical Communications</i> , 2011 , 47, 8886-8	5.8	20
666	High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2613-8	11.8	65
665	Flux pinning mechanisms in graphene-doped MgB2 superconductors. Scripta Materialia, 2011, 65, 634-6	53 7 .6	36
664	Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. <i>Biomaterials</i> , 2011 , 32, 7309-17	15.6	94
663	Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acidcollagen conjugate for neural interfacing. <i>Biomaterials</i> , 2011 , 32, 4714-24	15.6	53
662	Biocompatibility of immobilized aligned carbon nanotubes. <i>Small</i> , 2011 , 7, 1035-42	11	33
661	Fabrication and characterization of cytocompatible polypyrrole films inkjet printed from nanoformulations cytocompatible, inkjet-printed polypyrrole films. <i>Small</i> , 2011 , 7, 3434-8	11	12
660	Highly Stretchable Conducting SIBS-P3HT Fibers. Advanced Functional Materials, 2011, 21, 955-962	15.6	70
659	One-Step Wet-Spinning Process of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Fibers and the Origin of Higher Electrical Conductivity. <i>Advanced Functional Materials</i> , 2011 , 21, 3363-3370	15.6	130
658	Artificial muscles based on polypyrrole/carbon nanotube laminates. <i>Advanced Materials</i> , 2011 , 23, 2966	5-724	60
657	Buckled, stretchable polypyrrole electrodes for battery applications. <i>Advanced Materials</i> , 2011 , 23, 358	0∌4μ	194
656	Integrated High-Efficiency Pt/Carbon Nanotube Arrays for PEM Fuel Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 671-677	21.8	39

655	Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1918-1924		38
654	Inkjet printing of self-assembling polyelectrolyte hydrogels. <i>Soft Matter</i> , 2011 , 7, 3818	3.6	15
653	Gellan gum doped polypyrrole neural prosthetic electrode coatings. Soft Matter, 2011, 7, 4690	3.6	27
652	Reversible shape memory of nanoscale deformations in inherently conducting polymers without reprogramming. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 3371-8	3.4	14
651	Coexistence of Femtosecond- and Nonelectron-Injecting Dyes in Dye-Sensitized Solar Cells: Inhomogeniety Limits the Efficiency. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 22084-22088	3.8	49
650	Significant Performance Improvement of Porphyrin-Sensitized TiO2 Solar Cells under White Light Illumination. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 317-326	3.8	39
649	Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein. <i>Biomaterials</i> , 2011 , 32, 3822-31	15.6	108
648	Gel electrolytes with ionic liquid plasticiser for electrochromic devices. <i>Electrochimica Acta</i> , 2011 , 56, 4408-4413	6.7	29
647	Comparison of the electrochemical behaviour of buckypaper and polymer-intercalated buckypaper electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2011 , 652, 52-59	4.1	10
646	High strain electromechanical actuators based on electrodeposited polypyrrole doped with di-(2-ethylhexyl)sulfosuccinate. <i>Sensors and Actuators B: Chemical</i> , 2011 , 155, 278-284	8.5	20
645	Surfactant-controlled shape change of organic droplets using polypyrrole. <i>Thin Solid Films</i> , 2011 , 519, 6486-6491	2.2	16
644	. IEEE Sensors Journal, 2011 , 11, 2374-2382	4	20
643	6 GHz microstrip patch antennas with PEDOT and polypyrrole conducting polymers 2010,		9
642	The mechanical and the electrical properties of conducting polypyrrole fibers. <i>Journal of Applied Physics</i> , 2010 , 107, 103712	2.5	33
641	Microsecond dye regeneration kinetics in efficient solid state dye-sensitized solar cells using a photoelectrochemically deposited PEDOT hole conductor. <i>Journal of the American Chemical Society</i> , 2010 , 132, 9543-5	16.4	29
640	Injection Limitations in a Series of Porphyrin Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3276-3279	3.8	82
639	Chiral conducting polymers. <i>Chemical Society Reviews</i> , 2010 , 39, 2545-76	58.5	194
638	ESR, Raman, and conductivity studies on fractionated poly(2-methoxyaniline-5-sulfonic acid). Journal of Physical Chemistry B, 2010 , 114, 2337-41	3.4	22

(2010-2010)

6	37	Redox Behavior of Poly(2-methoxyaniline-5-sulfonic acid) and Its Remarkable Thermochromism, Solvatochromism, and Ionochromism. <i>Macromolecules</i> , 2010 , 43, 9982-9989	5.5	13	
6	536	Nafion-Doped Polypyrrole as a Supercapacitor Electrode in Ionic Liquid. <i>Molecular Crystals and Liquid Crystals</i> , 2010 , 520, 262/[538]-266/[542]	0.5	6	
6	35	The citrate-mediated shape evolution of transforming photomorphic silver nanoparticles. <i>Chemical Communications</i> , 2010 , 46, 7807-9	5.8	29	
6	34	Temporal trends of triclosan contamination in dated sediment cores from four urbanized estuaries: evidence of preservation and accumulation. <i>Chemosphere</i> , 2010 , 78, 347-52	8.4	72	
6	33	Functionalised polyterthiophenes as anode materials in polymer/polymer batteries. <i>Synthetic Metals</i> , 2010 , 160, 76-82	3.6	48	
6	32	Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber. <i>Synthetic Metals</i> , 2010 , 160, 94-98	3.6	81	
6	31	Polyterthiophene as an electrostimulated controlled drug release material of therapeutic levels of dexamethasone. <i>Synthetic Metals</i> , 2010 , 160, 1107-1114	3.6	24	
6	30	Photolithographic patterning of conducting polyaniline films via flash welding. <i>Synthetic Metals</i> , 2010 , 160, 1405-1409	3.6	13	
6	29	Printing conducting polymers. Analyst, The, 2010, 135, 2779-89	5	85	
6	528	Nanostructured carbon electrodes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3553		58	
6	527	Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells. <i>Nanoscale</i> , 2010 , 2, 282-6	7.7	91	
6	526	Organic bionics 2010 ,		1	
6	25	Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. <i>Nano Letters</i> , 2010 , 10, 838-46	11.5	323	
6	24	Nanostructured aligned CNT platforms enhance the controlled release of a neurotrophic protein from polypyrrole. <i>Nanoscale</i> , 2010 , 2, 499-501	7.7	26	
6	523	Printed hydrogel materials 2010 ,		1	
6	22	EPR characterisation of platinum nanoparticle functionalised carbon nanotube hybrid materials. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 4135-41	3.6	40	
6	21	Novel ACNT arrays based MEA structure-nano-Pt loaded ACNT/Nafion/ACNT for fuel cell applications. <i>Chemical Communications</i> , 2010 , 46, 4824-6	5.8	34	
6	20	Elastic conducting carbon nanotube-laden SIBS fibers 2010 ,		6	

619	Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiation. <i>Soft Matter</i> , 2010 , 6, 1045	3.6	35
618	Flexible and compressible Goretex-PEDOT membrane electrodes for solid-state dye-sensitized solar cells. <i>Langmuir</i> , 2010 , 26, 1452-5	4	22
617	Printing nanomaterials using non-contact printing 2010 ,		1
616	Advanced microwave-assisted production of hybrid electrodes for energy applications. <i>Energy and Environmental Science</i> , 2010 , 3, 1979	35.4	17
615	Conducting gel-fibres based on carrageenan, chitosan and carbon nanotubes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7953		31
614	Fabrication of Polyaniline-Based Gas Sensors Using Piezoelectric Inkjet and Screen Printing for the Detection of Hydrogen Sulfide. <i>IEEE Sensors Journal</i> , 2010 , 10, 1419-1426	4	89
613	Physical surface and electromechanical properties of doped polypyrrole biomaterials. <i>Biomaterials</i> , 2010 , 31, 1974-83	15.6	120
612	Capillary zone electrophoresis of graphene oxide and chemically converted graphene. <i>Journal of Chromatography A</i> , 2010 , 1217, 7593-7	4.5	44
611	Charge Transport in Dye-Sensitized Solar Cells Based on Flame-made \$hbox{TiO}_{bm 2}\$ Nanoparticles. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 1641-1648	3.8	15
610	Conducting polymers, dual neurotrophins and pulsed electrical stimulationdramatic effects on neurite outgrowth. <i>Journal of Controlled Release</i> , 2010 , 141, 161-7	11.7	191
609	Three-dimensional modeling of Cu and Pb distributions in Boston Harbor, Massachusetts and Cape Cod Bays. <i>Estuarine, Coastal and Shelf Science</i> , 2010 , 88, 450-463	2.9	8
608	Guidance of neurite outgrowth on aligned electrospun polypyrrole/poly(styrene-beta-isobutylene-beta-styrene) fiber platforms. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 1004-11	5.4	30
607	Creating conductive structures for cell growth: growth and alignment of myogenic cell types on polythiophenes. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 95, 256-68	5.4	52
606	Inherently Conducting Polymers via Electropolymerization for Energy Conversion and Storage 2010 , 215-240		2
605	Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. <i>Chemistry - A European Journal</i> , 2010 , 16, 10653-8	4.8	327
604	Electromechanical coupling in polypyrrole sensors and actuators. <i>Sensors and Actuators A: Physical</i> , 2010 , 161, 127-133	3.9	51
603	The effect of molecule size and shape on free charge generation, transport and recombination in all-thiophene dendrimer:fullerene bulk heterojunctions. <i>Organic Electronics</i> , 2010 , 11, 573-582	3.5	24
602	Electrochemical investigation of carbon nanotube nanoweb architecture in biological media. <i>Electrochemistry Communications</i> , 2010 , 12, 1471-1474	5.1	10

(2009-2010)

601	Wireless aquatic navigator for detection and analysis (WANDA). <i>Sensors and Actuators B: Chemical</i> , 2010 , 150, 425-435	8.5	17
600	Ion effects in REDOX cycling of conducting polymer based electrochromic materials. <i>Electrochemistry Communications</i> , 2010 , 12, 1505-1508	5.1	21
599	Evaluation of thrust force generated for a robotic fish propelled with polypyrrole actuators. <i>Polymer International</i> , 2010 , 59, 357-364	3.3	16
598	Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films. <i>Bulletin of the Korean Chemical Society</i> , 2010 , 31, 2185-2189	1.2	5
597	Applied physics. Electrode-cellular interface. <i>Science</i> , 2009 , 324, 185-6	33.3	93
596	Controllable Chemical Modification of Polyaniline Nanofibres. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1240, 1		1
595	Towards fully optimized conducting polymer bending sensors: the effect of geometry. <i>Smart Materials and Structures</i> , 2009 , 18, 085007	3.4	19
594	Carbon-Nanotube Biofiber Microelectrodes. <i>Journal of the Electrochemical Society</i> , 2009 , 156, P117	3.9	8
593	Molecules with Multiple Personalities: How Switchable Materials Could Revolutionize Chemical Sensing. <i>ECS Transactions</i> , 2009 , 19, 199-210	1	3
592	Single-Walled Carbon Nanotube/Trititanate Nanotube Composite Fibers. <i>Advanced Engineering Materials</i> , 2009 , 11, B55-B60	3.5	11
591	Wet-Spun Biodegradable Fibers on Conducting Platforms: Novel Architectures for Muscle Regeneration. <i>Advanced Functional Materials</i> , 2009 , 19, 3381-3388	15.6	49
590	A conducting-polymer platform with biodegradable fibers for stimulation and guidance of axonal growth. <i>Advanced Materials</i> , 2009 , 21, 4393-7	24	121
589	Nerve repair: a conducting-polymer platform with biodegradable fibers for stimulation and guidance of axonal growth (adv. Mater. 43/2009). <i>Advanced Materials</i> , 2009 , 21,	24	2
588	Homogeneous catalysts with a mechanical ("machine-like") action. <i>Chemistry - A European Journal</i> , 2009 , 15, 4746-59	4.8	16
587	Electrochemical AFM. <i>Imaging & Microscopy</i> , 2009 , 11, 40-43		2
586	Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 91, 241-50	5.4	89
585	Mechanical reinforcement of continuous flow spun polyelectrolyte complex fibers. <i>Macromolecular Bioscience</i> , 2009 , 9, 354-60	5.5	15
584	Tough supersoft sponge fibers with tunable stiffness from a DNA self-assembly technique. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5116-20	16.4	31

583	Electrochemical polarisation and galvanic couple behaviour of the primary phase of 55% Al\(\mathbb{Z}\)n coating investigated using band microelectrodes (BME) and band microelectrode arrays. <i>Journal of Solid State Electrochemistry</i> , 2009 , 13, 619-631	2.6	3
582	Processable polyaniline-HCSA/poly(vinyl acetate-co-butyl acrylate) corrosion protection coatings for aluminium alloy 2024-T3: A SVET and Raman study. <i>Electrochimica Acta</i> , 2009 , 54, 1483-1490	6.7	25
581	Development of electrorheological chip and conducting polymer-based sensor. <i>Frontiers of Mechanical Engineering in China</i> , 2009 , 4, 393-396		2
580	Nanoelectrodes: energy conversion and storage. <i>Materials Today</i> , 2009 , 12, 20-27	21.8	55
579	Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components. <i>Biomaterials</i> , 2009 , 30, 5292-304	15.6	187
578	Electrochemical pneumatic actuators utilising carbon nanotube electrodes. <i>Sensors and Actuators B: Chemical</i> , 2009 , 138, 48-54	8.5	7
577	Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. <i>Sensors and Actuators B: Chemical</i> , 2009 , 139, 231-236	8.5	161
576	Ionic liquid as electrolyte in a self-powered controlled release system. <i>Sensors and Actuators B:</i> Chemical, 2009 , 141, 452-457	8.5	7
575	Modulated release of dexamethasone from chitosanEarbon nanotube films. <i>Sensors and Actuators A: Physical</i> , 2009 , 155, 120-124	3.9	38
574	Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. <i>Biomaterials</i> , 2009 , 30, 2614-24	15.6	238
573	Carbon nanotube biogels. <i>Carbon</i> , 2009 , 47, 1282-1291	10.4	42
572	Carbon nanotube-based transducers for immunoassays. <i>Carbon</i> , 2009 , 47, 2337-2343	10.4	35
571	Inkjet printed LED based pH chemical sensor for gas sensing. <i>Analytica Chimica Acta</i> , 2009 , 652, 308-14	6.6	34
57°	Visualizing dynamic actuation of ultrathin polypyrrole films. <i>Langmuir</i> , 2009 , 25, 3627-33	4	25
569	Controlled transport of droplets using conducting polymers. <i>Langmuir</i> , 2009 , 25, 11137-41	4	30
568	Solid state photochemistry of novel composites containing luminescent metal centers and poly(2-methoxyaniline-5-sulfonic acid). <i>Journal of Physical Chemistry B</i> , 2009 , 113, 7443-8	3.4	9
567	Luminescent metal complexes within polyelectrolyte layers: tuning electron and energy transfer. <i>Langmuir</i> , 2009 , 25, 14053-60	4	19
566	Influence of added hydrogen bonding agents on the chiroptical properties of chiral polyaniline. <i>Synthetic Metals</i> , 2009 , 159, 715-717	3.6	11

(2008-2009)

565	Synthesis and characterisation of controllably functionalised polyaniline nanofibres. <i>Synthetic Metals</i> , 2009 , 159, 741-748	3.6	29
564	A molecular template approach to integration of polyaniline into textiles. <i>Synthetic Metals</i> , 2009 , 159, 1135-1140	3.6	31
563	Capacitive properties of RuO2 and Ru©o mixed oxide deposited on single-walled carbon nanotubes for high-performance supercapacitors. <i>Synthetic Metals</i> , 2009 , 159, 1389-1392	3.6	36
562	Electrochemical polymerization of pyrrole in BMIMPF6 ionic liquid and its electrochemical response to dopamine in the presence of ascorbic acid. <i>Synthetic Metals</i> , 2009 , 159, 1542-1545	3.6	18
561	Effect of synthesis conditions on the properties of wet spun polypyrrole fibres. <i>Synthetic Metals</i> , 2009 , 159, 1837-1843	3.6	31
560	Solvent dependence of electrochromic behaviour of polypyrrole: Rediscovering the effect of molecular oxygen. <i>Synthetic Metals</i> , 2009 , 159, 1950-1955	3.6	11
559	A new twist: controlled shape-shifting of silver nanoparticles from prisms to discs. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8294		35
558	Zn-Zn porphyrin dimer-sensitized solar cells: toward 3-D light harvesting. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15621-3	16.4	165
557	Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites. <i>Journal of Neural Engineering</i> , 2009 , 6, 065002	5	73
556	Carbon nanotube network modified carbon fibre paper for Li-ion batteries. <i>Energy and Environmental Science</i> , 2009 , 2, 393	35.4	99
555	Switchable redox activity by proton fuelled DNA nano-machines. Chemical Communications, 2009, 1240-	- 2 5.8	16
554	Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries. <i>Chemistry of Materials</i> , 2009 , 21, 2604-2606	9.6	514
553	Electrocatalytic Reduction of Carbon Dioxide by Cobalt-Phthalocyanine-Incorporated Polypyrrole. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, E17		20
552	Direct growth of carbon nanotubes onto titanium dioxide nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 955-9	1.3	5
551	Processable aqueous dispersions of graphene nanosheets. <i>Nature Nanotechnology</i> , 2008 , 3, 101-5	28.7	7729
550	The origin of open circuit voltage of porphyrin-sensitised TiO(2) solar cells. <i>Chemical Communications</i> , 2008 , 4741-3	5.8	95
549	Nano-Pt Modified Aligned Carbon Nanotube Arrays Are Efficient, Robust, High Surface Area Electrocatalysts. <i>Chemistry of Materials</i> , 2008 , 20, 2603-2605	9.6	38
548	Field-Cycling NMR Relaxometry Study of Dynamic Processes in Conducting Polyaniline. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17688-17693	3.8	1

547	Characterisation of porous freeze dried conducting carbon nanotubedhitosan scaffolds. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5417		31
546	Production of polypyrrole fibres by wet spinning. <i>Synthetic Metals</i> , 2008 , 158, 104-107	3.6	52
545	Towards the development of a fully integrated polymeric microfluidic platform for environmental analysis. <i>Talanta</i> , 2008 , 77, 463-467	6.2	19
544	Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. <i>Talanta</i> , 2008 , 77, 710-717	6.2	171
543	Response Characterization of Electroactive Polymers as Mechanical Sensors. <i>IEEE/ASME Transactions on Mechatronics</i> , 2008 , 13, 187-196	5.5	55
542	On the electrodeposition of titanium in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 2189	9- <u>9</u> .Ø	76
541	Electrochemical co-deposition of Ti n+ phases with gold in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 5863-9	3.6	8
540	Galvanic coupling conducting polymers to biodegradable Mg initiates autonomously powered drug release. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3608		24
539	Wearable sensors for monitoring sports performance and training 2008,		15
538	Reversible photoinduced electron transfer in a ruthenium poly(2-methoxyaniline-5-sulfonic acid) composite film. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 12907-12	3.4	24
537	3D bio-nanofibrous PPy/SIBS mats as platforms for cell culturing. <i>Chemical Communications</i> , 2008 , 3729)- 3 .8	39
536	The optimum functionalization of carbon nanotube/ferritin composites. <i>Smart Materials and Structures</i> , 2008 , 17, 045029	3.4	5
535	Electrochemical pH oscillations of ethyl viologen/ionic liquid. <i>Langmuir</i> , 2008 , 24, 3562-5	4	3
534	Carbon Nanotube Electroactive Polymer Materials: Opportunities and Challenges. <i>MRS Bulletin</i> , 2008 , 33, 215-224	3.2	43
533	Fast bender actuators for fish-like aquatic robots 2008,		19
53 ²	Characterisation of titanium dioxide-single walled carbon nanotubes composite fibres prepared by the wet spinning technique 2008 ,		2
531	Fabrication of chemical sensors using inkjet printing and application to gas detection 2008,		4
530	Wearable technology for bio-chemical analysis of body fluids during exercise. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> 2008 , 2008, 5741-4	0.9	12

529	Direct Ascorbic Acid Detection with Ferritin Immobilized on Single-Walled Carbon Nanotubes. Electrochemical and Solid-State Letters, 2008 , 11, K4		12
528	Nanofiber Mats from DNA, SWNTs, and Poly(ethylene oxide) and Their Application in Glucose Biosensors. <i>Journal of the Electrochemical Society</i> , 2008 , 155, K100	3.9	16
527	Wearable technology for the real-time analysis of sweat during exercise 2008,		6
526	Enhanced Performance of Dye Sensitized Solar Cells Utilizing Platinum Electrodeposit Counter Electrodes. <i>Journal of the Electrochemical Society</i> , 2008 , 155, K124	3.9	53
525	Sensor response of polypyrrole trilayer benders as a function of geometry 2008,		4
524	Functionalising carbon nanotubes. International Journal of Nanotechnology, 2008, 5, 331	1.5	7
523	A novel capacitor material based on Nafion-doped polypyrrole. <i>Journal of Power Sources</i> , 2008 , 177, 665	5 -66 68	95
522	Electrochemical synthesis and characterisation of polyaniline/poly(2-methoxyaniline-5-sulfonic acid) composites. <i>Electrochimica Acta</i> , 2008 , 53, 4146-4155	6.7	13
521	The mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene)poly(styrenesulfonic) acid using linear-diol additives: Its effect on electrochromic performance. <i>Thin Solid Films</i> , 2008 , 516, 7828-7835	2.2	25
520	Preparation of Low Loading Pt/C Catalyst by Carbon Xerogel Method for Ethanol Electrooxidation. <i>Catalysis Letters</i> , 2008 , 122, 111-114	2.8	8
519	Freshwater Fish Mercury Concentrations in a Regionally High Mercury Deposition Area. <i>Water, Air, and Soil Pollution</i> , 2008 , 191, 15-31	2.6	13
518	Amperometric Glucose Biosensor on Layer by Layer Assembled Carbon Nanotube and Polypyrrole Multilayer Film. <i>Electroanalysis</i> , 2008 , 20, 150-156	3	62
517	DNA hydrogel fiber with self-entanglement prepared by using an ionic liquid. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2470-4	16.4	45
516	Carbon Nanotube Biofiber Formation in a Polymer-Free Coagulation Bath. <i>Advanced Functional Materials</i> , 2008 , 18, 61-66	15.6	60
515	One-Step Synthesis of Conducting PolymerNoble Metal Nanoparticle Composites using an Ionic Liquid. <i>Advanced Functional Materials</i> , 2008 , 18, 2031-2040	15.6	58
514	Spinning Carbon Nanotube-Gel Fibers Using Polyelectrolyte Complexation. <i>Advanced Functional Materials</i> , 2008 , 18, 3759-3764	15.6	43
513	Monolithic Actuators from Flash-Welded Polyaniline Nanofibers. <i>Advanced Materials</i> , 2008 , 20, 155-158	24	154
512	DNA-Wrapped Single-Walled Carbon Nanotube Hybrid Fibers for supercapacitors and Artificial Muscles. <i>Advanced Materials</i> , 2008 , 20, 466-470	24	80

511	Direct Growth of Flexible Carbon Nanotube Electrodes. Advanced Materials, 2008, 20, 566-570	24	153
510	Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. <i>Advanced Materials</i> , 2008 , 20, 3557-3561	24	1665
509	Performance characteristics of a polypyrrole modified polydimethylsiloxane (PDMS) membrane based microfluidic pump. <i>Sensors and Actuators A: Physical</i> , 2008 , 148, 239-244	3.9	41
508	Self-maintained colorimetric acid/base sensor using polypyrrole actuator. <i>Sensors and Actuators B: Chemical</i> , 2008 , 129, 518-524	8.5	16
507	A galvanic cell driven controlled release system based on conducting polymers. <i>Sensors and Actuators B: Chemical</i> , 2008 , 129, 605-611	8.5	11
506	The intelligent knee sleeve: A wearable biofeedback device. <i>Sensors and Actuators B: Chemical</i> , 2008 , 131, 541-547	8.5	94
505	Electrochemical properties of SWNT/ferritin composite for bioapplications. <i>Sensors and Actuators B: Chemical</i> , 2008 , 133, 393-397	8.5	15
504	Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. <i>Biomaterials</i> , 2008 , 29, 3393-9	15.6	609
503	Induction of titanium reduction using pyrrole and polypyrrole in the ionic liquid ethyl-methyl-imidazolium bis(trifluoromethanesulphonyl)amide. <i>Electrochemistry Communications</i> , 2008 , 10, 217-221	5.1	12
502	Faradaic charge corrected colouration efficiency measurements for electrochromic devices. <i>Electrochimica Acta</i> , 2008 , 53, 2250-2257	6.7	16
501	The fabrication and characterization of inkjet-printed polyaniline nanoparticle films. <i>Electrochimica Acta</i> , 2008 , 53, 5092-5099	6.7	73
500	Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. <i>Electrochemistry Communications</i> , 2008 , 10, 519-522	5.1	22
499	The influence of poly(2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of a highly luminescent ruthenium complex. <i>Electrochimica Acta</i> , 2008 , 53, 4599-4605	6.7	28
498	Gas Phase Electroformation of Polypyrrole. <i>Journal of Applied Sciences</i> , 2008 , 8, 2967-2974	0.3	3
497	Conductive Polymers 2008 , 695-704		
496	Flexible, Aligned Carbon Nanotube/Conducting Polymer Electrodes for a Lithium-Ion Battery. <i>Chemistry of Materials</i> , 2007 , 19, 3595-3597	9.6	199
495	Inkjet printable polyaniline nanoformulations. <i>Langmuir</i> , 2007 , 23, 8569-74	4	105
494	An Efficient Bifunctional Electrocatalyst of Methanol Oxidation. <i>Organometallics</i> , 2007 , 26, 4860-4862	3.8	3

(2007-2007)

493	Bio-nanowebs Based on Poly(styrene-Esobutylene-Estyrene) (SIBS) Containing Single-Wall Carbon Nanotubes. <i>Chemistry of Materials</i> , 2007 , 19, 2721-2723	9.6	26
492	Chemical and photoluminescence properties of purified poly(2-methoxyaniline-5-sulfonic acid) and oligomer. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 12738-47	3.4	16
491	Smart Nanotextiles: A Review of Materials and Applications. MRS Bulletin, 2007, 32, 434-442	3.2	169
490	Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9452-7	16.4	100
489	Bio-sensing textiles - Wearable Chemical Biosensors for Health Monitoring 2007 , 35-39		16
488	Summer formation of a high-nutrient low-oxygen pool in Cape Cod Bay, USA. <i>Journal of Geophysical Research</i> , 2007 , 112,		4
487	Facile Synthesis of a Chiral Ionic Liquid Derived from 1-Phenylethylamine. <i>Australian Journal of Chemistry</i> , 2007 , 60, 64	1.2	10
486	Application of polypyrrole to flexible substrates. <i>Journal of Applied Polymer Science</i> , 2007 , 104, 3938-39	947 9	29
485	Soft Mechanical Sensors Through Reverse Actuation in Polypyrrole. <i>Advanced Functional Materials</i> , 2007 , 17, 3216-3222	15.6	76
484	Carbon-Nanotube Biofibers. Advanced Materials, 2007 , 19, 1244-1248	24	69
484	Carbon-Nanotube Biofibers. Advanced Materials, 2007, 19, 1244-1248 Free standing carbon nanotube composite bio-electrodes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82, 37-43	3.5	30
	Free standing carbon nanotube composite bio-electrodes. <i>Journal of Biomedical Materials Research</i>		30
483	Free standing carbon nanotube composite bio-electrodes. <i>Journal of Biomedical Materials Research</i> - <i>Part B Applied Biomaterials</i> , 2007 , 82, 37-43 Incorporation of carbon nanotubes into the biomedical polymer	3.5	30
483	Free standing carbon nanotube composite bio-electrodes. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2007 , 82, 37-43 Incorporation of carbon nanotubes into the biomedical polymer poly(styrene-Estyrene). <i>Carbon</i> , 2007 , 45, 402-410 Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical	3.5	30 51
483 482 481	Free standing carbon nanotube composite bio-electrodes. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2007 , 82, 37-43 Incorporation of carbon nanotubes into the biomedical polymer poly(styrene-Elsobutylene-Estyrene). <i>Carbon</i> , 2007 , 45, 402-410 Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. <i>Electrochimica Acta</i> , 2007 , 52, 7377-7385 Electrochemical actuation properties of a novel solution-processable polythiophene. <i>Electrochimica</i>	3·5 10·4 6·7	30 51 287
483 482 481 480	Free standing carbon nanotube composite bio-electrodes. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2007 , 82, 37-43 Incorporation of carbon nanotubes into the biomedical polymer poly(styrene-Elsobutylene-Estyrene). <i>Carbon</i> , 2007 , 45, 402-410 Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. <i>Electrochimica Acta</i> , 2007 , 52, 7377-7385 Electrochemical actuation properties of a novel solution-processable polythiophene. <i>Electrochimica Acta</i> , 2007 , 53, 1830-1836 High current density and drift velocity in templated conducting polymers. <i>Organic Electronics</i> , 2007 ,	3.5 10.4 6.7	30 51 287 2
483 482 481 480 479	Free standing carbon nanotube composite bio-electrodes. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2007 , 82, 37-43 Incorporation of carbon nanotubes into the biomedical polymer poly(styrene-Elsobutylene-Estyrene). <i>Carbon</i> , 2007 , 45, 402-410 Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. <i>Electrochimica Acta</i> , 2007 , 52, 7377-7385 Electrochemical actuation properties of a novel solution-processable polythiophene. <i>Electrochimica Acta</i> , 2007 , 53, 1830-1836 High current density and drift velocity in templated conducting polymers. <i>Organic Electronics</i> , 2007 , 8, 796-800 The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth	3.5 10.4 6.7 6.7	30 51 287 2

475	Incorporation of dye into conducting polyaniline nanoparticles. <i>Reactive and Functional Polymers</i> , 2007 , 67, 173-183	4.6	3
474	A novel dual modelactuation in chitosan/polyaniline/carbon nanotube fibers. <i>Sensors and Actuators B: Chemical</i> , 2007 , 121, 616-621	8.5	60
473	Can fabric sensors monitor breast motion?. <i>Journal of Biomechanics</i> , 2007 , 40, 3056-9	2.9	36
472	Magnetorheology of single-walled nanotube dispersions. <i>Materials Letters</i> , 2007 , 61, 3116-3118	3.3	26
471	Preparation of platinum inverse opals using self-assembled templates and their application in methanol oxidation. <i>Materials Letters</i> , 2007 , 61, 2887-2890	3.3	20
470	Histidine-rich glycoprotein from the hemolymph of the marine mussel Mytilus edulis L. binds Class A, Class B, and borderline metals. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 872-7	3.8	17
469	Putting function into fashion: Organic conducting polymer fibres and textiles. <i>Fibers and Polymers</i> , 2007 , 8, 135-142	2	54
468	Platinum recovery using inherently conducting polymers and common fabrics. <i>Fibers and Polymers</i> , 2007 , 8, 463-469	2	5
467	Preparation of novel ultrafine fibers based on DNA and poly(ethylene oxide) by electrospinning from aqueous solutions. <i>Reactive and Functional Polymers</i> , 2007 , 67, 461-467	4.6	33
466	Novel fullerene-functionalised poly(terthiophenes). <i>Journal of Electroanalytical Chemistry</i> , 2007 , 599, 79-84	4.1	13
465	Photocatalytic Oxidation of Methanol Using Titanium Dioxide/Single-Walled Carbon Nanotube Composite. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A407	3.9	23
464	Electrodeposition and characterisation of polypyrroles containing sulfonated carbon nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 3487-94	1.3	7
463	Poly(2-methoxyaniline-5-sulfonic Acid) - Surfactant Complexes and Their Redox and Solvatochromic Behaviour. <i>Australian Journal of Chemistry</i> , 2007 , 60, 159	1.2	7
462	Actuation behaviour of polyaniline films and tubes prepared by the phase inversion technique. <i>Smart Materials and Structures</i> , 2007 , 16, 1549-1554	3.4	5
461	Fabric-based fluid handling platform with integrated analytical capability. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2007 , 2007, 6451		5
460	Polypyrrole based switchable filter system. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society,</i> 2007 , 2007, 4090-1		1
459	Immobilisation of fully sulfonated polyaniline on nanostructured calcium silicate. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 4303-10	1.3	6
458	Conducting textiles from single-walled carbon nanotubes. <i>Synthetic Metals</i> , 2007 , 157, 358-362	3.6	70

(2006-2007)

457	Photovoltaic properties of poly(terthiophene) doped with light-harvesting dyes and photocurrent generation mechanism. <i>Synthetic Metals</i> , 2007 , 157, 441-447	3.6	16
456	Conducting Polymers with Fibrillar Morphology Synthesized in a Biphasic Ionic Liquid/Water System. <i>Macromolecules</i> , 2007 , 40, 2702-2711	5.5	55
455	Conducting polymers - bridging the bionic interface. <i>Soft Matter</i> , 2007 , 3, 665-671	3.6	113
454	Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4359		66
453	A readily-prepared, convergent, oxygen reduction electrocatalyst. Chemical Communications, 2007, 335	3558	36
452	Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. <i>Polymer</i> , 2006 , 47, 4520-4530	3.9	41
451	The development and characterisation of polyanilinelingle walled carbon nanotube composite fibres using 2-acrylamido-2 methyl-1-propane sulfonic acid (AMPSA) through one step wet spinning process. <i>Polymer</i> , 2006 , 47, 4996-5002	3.9	39
450	Induction of chirality into a fully sulfonated poly(methoxyaniline) via acidBase interactions with chiral amines. <i>Polymer</i> , 2006 , 47, 8088-8094	3.9	10
449	Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. Journal of Controlled Release, 2006 , 116, 285-94	11.7	181
448	Nanocomposites of Polyaniline/Poly(2-methoxyaniline-5-sulfonic acid). <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1995-2000	4.8	37
447	Fast Carbon Nanotube Charging and Actuation. Advanced Materials, 2006, 18, 870-873	24	56
446	Carbon-Nanotube-Reinforced Polyaniline Fibers for High-Strength Artificial Muscles. <i>Advanced Materials</i> , 2006 , 18, 637-640	24	242
445	Wearable biofeedback systems 2006 , 450-470		1
444	Wireless-based Monitoring of Body Movements Using Wearable Sensors. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 920, 1		2
443	Electrochemical properties of carbon nanotubes 2006 , 297-321		1
442	Synthesis of Chiral Polyaniline Films via Chemical Vapor Phase Polymerization. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, C9		21
441	A Simple Means to Immobilize Enzyme into Conducting Polymers via Entrapment. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, H68		24
440	SolutionBurface Electropolymerization: A Route to Morphologically Novel Poly(pyrrole) Using an Ionic Liquid. <i>Macromolecules</i> , 2006 , 39, 7193-7195	5.5	33

439	Swelling behavior of chitosan hydrogels in ionic liquid-water binary systems. <i>Langmuir</i> , 2006 , 22, 9375-	9 4	41
438	Self-Oscillatory Actuation at Constant DC Voltage with pH-Sensitive Chitosan/Polyaniline Hydrogel Blend. <i>Chemistry of Materials</i> , 2006 , 18, 5805-5809	9.6	76
437	Influence of Electrochemical Polymerization Temperature on the Chiroptical Properties of (+)-Camphorsulfonic Acid-Doped Polyaniline. <i>Macromolecules</i> , 2006 , 39, 5604-5610	5.5	36
436	Polyaniline fibres containing single walled carbon nanotubes: Enhanced performance artificial muscles. <i>Synthetic Metals</i> , 2006 , 156, 796-803	3.6	64
435	Conducting polymer nanoparticles synthesized in an ionic liquid by chemical polymerisation. <i>Synthetic Metals</i> , 2006 , 156, 979-983	3.6	47
434	Fast trilayer polypyrrole bending actuators for high speed applications. <i>Synthetic Metals</i> , 2006 , 156, 10)1 7, 602	.2 ₁₅₇
433	Electrochemical hydrogen storage in single-walled carbon nanotube paper. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 713-8	1.3	11
432	Surprising shrinkage of expanding gels under an external load. <i>Nature Materials</i> , 2006 , 5, 48-51	27	52
431	Electrosynthesis of novel photochemically active inherently conducting polymers using an ionic liquid electrolyte. <i>Electrochimica Acta</i> , 2006 , 51, 2471-2476	6.7	24
430	Poly(3-methylthiophene) electrochemical actuators showing increased strain and work per cycle at higher operating stresses. <i>Polymer</i> , 2006 , 47, 7720-7725	3.9	22
429	Functionalized polythiophene-coated textile: A new anode material for a flexible battery. <i>Journal of Power Sources</i> , 2006 , 156, 610-614	8.9	59
428	LithiumPolymer battery based on polybithiophene as cathode material. <i>Journal of Power Sources</i> , 2006 , 159, 708-711	8.9	16
427	Highly-flexible fibre battery incorporating polypyrrole cathode and carbon nanotubes anode. <i>Journal of Power Sources</i> , 2006 , 161, 1458-1462	8.9	46
426	Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. <i>Sensors and Actuators B: Chemical</i> , 2006 , 115, 678-684	8.5	104
425	Asymmetric proliferation with optically active polyanilines. <i>Chemical Communications</i> , 2005 , 4539-41	5.8	6
424	Force generation from polypyrrole actuators. Smart Materials and Structures, 2005, 14, 406-412	3.4	47
423	Investigation of Ig.G adsorption and the effect on electrochemical responses at titanium dioxide electrode. <i>Langmuir</i> , 2005 , 21, 316-22	4	19
422	Autopolymerization of Pyrrole in the Presence of a Host/Guest Calixarene. <i>Macromolecules</i> , 2005 , 38, 1616-1622	5.5	24

421	Optically active polymer carbon nanotube composite. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22725	-93.4	43
420	Actuation behaviour of layered composites of polyaniline, carbon nanotubes and polypyrrole. <i>Synthetic Metals</i> , 2005 , 151, 85-91	3.6	59
419	Electrochemically-induced fluid movement using polypyrrole. Synthetic Metals, 2005, 151, 60-64	3.6	27
418	The Development and Characterisation of Conducting Polymeric-based Sensing Devices. <i>Synthetic Metals</i> , 2005 , 154, 25-28	3.6	53
417	Hydrogen generation using PPy-FMS modified PVDF membrane and other substrates. <i>Synthetic Metals</i> , 2005 , 154, 69-72	3.6	3
416	The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. <i>Synthetic Metals</i> , 2005 , 152, 77-80	3.6	98
415	Electrochemical synthesis of polypyrrole films using stainless steel mesh as substrate for battery application. <i>Synthetic Metals</i> , 2005 , 153, 117-120	3.6	20
4 ¹ 4	Purification and characterisation of poly(2-methoxyaniline-5-sulfonicacid acid). <i>Synthetic Metals</i> , 2005 , 153, 181-184	3.6	31
413	An HRP based biosensor using sulphonated polyaniline. Synthetic Metals, 2005, 153, 185-188	3.6	34
412	Conducting polymer coated lycra. Synthetic Metals, 2005, 155, 698-701	3.6	142
412 411	Conducting polymer coated lycra. <i>Synthetic Metals</i> , 2005 , 155, 698-701 TITAN: a conducting polymer based microfluidic pump. <i>Smart Materials and Structures</i> , 2005 , 14, 1511-1		142 57
<u> </u>			, , , , , , , , , , , , , , , , , , ,
411	TITAN: a conducting polymer based microfluidic pump. <i>Smart Materials and Structures</i> , 2005 , 14, 1511-1		57
411	TITAN: a conducting polymer based microfluidic pump. <i>Smart Materials and Structures</i> , 2005 , 14, 1511-1 In pursuit of high-force/high-stroke conducting polymer actuators (Invited Paper) 2005 , 5759, 314 Highly processable method for the construction of miniature conducting polymer moisture sensors		57
411 410 409	TITAN: a conducting polymer based microfluidic pump. <i>Smart Materials and Structures</i> , 2005 , 14, 1511-1 In pursuit of high-force/high-stroke conducting polymer actuators (Invited Paper) 2005 , 5759, 314 Highly processable method for the construction of miniature conducting polymer moisture sensors 2005 , 5649, 607 Novel electrode substrates for rechargeable lithium/polypyrrole batteries. <i>Journal of Power</i>	531.6	57 3
411 410 409 408	TITAN: a conducting polymer based microfluidic pump. <i>Smart Materials and Structures</i> , 2005 , 14, 1511-1 In pursuit of high-force/high-stroke conducting polymer actuators (Invited Paper) 2005 , 5759, 314 Highly processable method for the construction of miniature conducting polymer moisture sensors 2005 , 5649, 607 Novel electrode substrates for rechargeable lithium/polypyrrole batteries. <i>Journal of Power Sources</i> , 2005 , 140, 162-167	531.6 8.9	57 3
411 410 409 408 407	TITAN: a conducting polymer based microfluidic pump. <i>Smart Materials and Structures</i> , 2005 , 14, 1511-1 In pursuit of high-force/high-stroke conducting polymer actuators (Invited Paper) 2005 , 5759, 314 Highly processable method for the construction of miniature conducting polymer moisture sensors 2005 , 5649, 607 Novel electrode substrates for rechargeable lithium/polypyrrole batteries. <i>Journal of Power Sources</i> , 2005 , 140, 162-167 A highly flexible polymer fibre battery. <i>Journal of Power Sources</i> , 2005 , 150, 223-228 Metal transport studies on inherently conducting polymer membranes containing cyclodextrin	531.6 8.9	57 3 63 57

403	Biomolecules as selective dispersants for carbon nanotubes. <i>Carbon</i> , 2005 , 43, 1879-1884	10.4	62
402	Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. <i>Carbon</i> , 2005 , 43, 1891-1896	10.4	99
401	Photoelectrochemical Cells Based on Inherently Conducting Polymers. MRS Bulletin, 2005, 30, 46-49	3.2	14
400	An Amperometric Enzyme Biosensor Fabricated from Polyaniline Nanoparticles. <i>Electroanalysis</i> , 2005 , 17, 423-430	3	83
399	Liquid Crystals of DNA-Stabilized Carbon Nanotubes. Advanced Materials, 2005, 17, 1673-1676	24	181
398	StuffedItonducting polymers. <i>Polymer</i> , 2005 , 46, 4664-4669	3.9	27
397	Micro-humidity sensors based on a processable polyaniline blend. <i>Sensors and Actuators B: Chemical</i> , 2005 , 107, 657-665	8.5	84
396	Aligned/micropatterned carbon nanotube arrays: surface functionalization and electrochemical sensing 2005 ,		3
395	Photoelectrochemical Solar Cells based on Polyterthiophenes Containing Porphyrins using Ionic Liquid Electrolyte. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, A528		16
394	Carbon Nanotube Based Electronic and Electrochemical Sensors. Sensor Letters, 2005, 3, 183-193	0.9	31
393	Bionic Ears: Their Development and Future Advances Using Neurotrophins and Inherently Conducting Polymers. <i>Applied Bionics and Biomechanics</i> , 2004 , 1, 67-89	1.6	4
392	Stabilization of single-wall carbon nanotubes in fully sulfonated polyaniline. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 976-81	1.3	12
391	Enhancement of polymer electronics via surface states on highly doped polymeric anodes. <i>Journal Physics D: Applied Physics</i> , 2004 , 37, 165-170	3	6
390	Bionic ears: their development and future advances using neurotrophins and inherently conducting polymers. <i>Applied Bionics and Biomechanics</i> , 2004 , 1, 67-89	1.6	2
389	Gold recovery using inherently conducting polymer coated textiles. Fibers and Polymers, 2004, 5, 1-5	2	17
388	In situ formed processable polypyrrole nanoparticle/amphiphilic elastomer composites and their properties. <i>Polymer International</i> , 2004 , 53, 400-405	3.3	17
387	Electroless recovery of gold chloride using inherently conducting polymers. <i>Polymer International</i> , 2004 , 53, 681-687	3.3	19
386	Properties of Carbon Nanotube Fibers Spun from DNA-Stabilized Dispersions. <i>Advanced Functional Materials</i> , 2004 , 14, 133-138	15.6	139

(2004-2004)

385	Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. <i>Electrochemistry Communications</i> , 2004 , 6, 22-27	5.1	206
384	Redox-active conducting polymers incorporating ferrocenes. <i>Electrochimica Acta</i> , 2004 , 49, 691-702	6.7	21
383	An integrated electrochemical sensor Ectuator system. Sensors and Actuators A: Physical, 2004, 114, 65-72	3.9	15
382	Electrochemical synthesis of polypyrrole in ionic liquids. <i>Polymer</i> , 2004 , 45, 1447-1453	3.9	178
381	Photoelectrochemical cells based on a novel porphyrin containing light harvesting conducting copolymer. <i>Electrochimica Acta</i> , 2004 , 49, 329-337	6.7	31
380	Studies of double layer capacitance and electron transfer at a gold electrode exposed to protein solutions. <i>Electrochimica Acta</i> , 2004 , 49, 4223-4230	6.7	70
379	Electrochemical modulation of antigen-antibody binding. <i>Biosensors and Bioelectronics</i> , 2004 , 20, 260-8	11.8	62
378	Electrodeposition of conducting polymers on active metals by electron transfer mediation. <i>Current Applied Physics</i> , 2004 , 4, 137-140	2.6	33
377	Polypyrrole filament sensors for gases and vapours. Current Applied Physics, 2004, 4, 366-369	2.6	30
376	Enhanced electrochemical stability of polyaniline in ionic liquids. <i>Current Applied Physics</i> , 2004 , 4, 389-39	93 .6	54
375	Photoluminescence and photo-redox reactions of poly(2-methoxyaniline-5-sulfonic acid). <i>Current Applied Physics</i> , 2004 , 4, 394-397	2.6	10
374	Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions. <i>Current Applied Physics</i> , 2004 , 4, 402-406	2.6	86
373	Use of inherently conducting polymers and pulsed amperometry in flow injection analysis to detect oligonucleotides. <i>Analyst, The</i> , 2004 , 129, 585-8	5	4
372	A readily-prepared electrocatalytic coating that is more active than platinum for hydrogen generation in 1 M strong acid. <i>Chemical Communications</i> , 2004 , 308-9	5.8	23
371	Vapor Phase Polymerization of Pyrrole and Thiophene Using Iron(III) Sulfonates as Oxidizing Agents. <i>Macromolecules</i> , 2004 , 37, 5930-5935	5.5	158
370	Enhanced control and stability of polypyrrole electromechanical actuators. <i>Synthetic Metals</i> , 2004 , 140, 273-280	3.6	76
369	Characterization of conducting-polymer-based bimorph vibration sensors 2004,		1
368	Wearable textile biofeedback systems: are they too intelligent for the wearer?. Studies in Health Technology and Informatics, 2004, 108, 271-7	0.5	1

367	Electropolymerised acrylic coatings for polymer-metal adhesion enhancement. <i>Journal of Adhesion Science and Technology</i> , 2003 , 17, 1403-1423	2	9
366	Carbon Nanotube Composites as Efficient Charge Transport Media in Organic Optoelectronic Devices 2003 , 4876, 338		
365	Comparison of Emeraldine Salt, Emeraldine Base, and Epoxy Coatings for Corrosion Protection of Steel During Immersion in a Saline Solution. <i>Corrosion</i> , 2003 , 59, 22-31	1.8	30
364	Gas concentration control by directly linking sensor to actuator 2003 , 5051, 509		
363	Scanning Vibrating Electrode Studies of Electroactive Conducting Polymers on Active Metals. <i>ACS Symposium Series</i> , 2003 , 228-253	0.4	8
362	Comparison of polyaniline primers prepared with different dopants for corrosion protection of steel. <i>Progress in Organic Coatings</i> , 2003 , 48, 43-49	4.8	116
361	Biosensors Based on Aligned Carbon Nanotubes Coated with Inherently Conducting Polymers. <i>Electroanalysis</i> , 2003 , 15, 1089-1094	3	247
360	Electrochemical polymerization of acrylics on stainless steel cathodes. <i>Journal of Applied Polymer Science</i> , 2003 , 87, 765-773	2.9	19
359	Preparation and characterization of a polyaniline/poly(butyl acrylatellinyl acetate) composite as a novel conducting polymer composite. <i>Journal of Applied Polymer Science</i> , 2003 , 90, 2525-2531	2.9	7
358	Investigation of protein adsorption and electrochemical behavior at a gold electrode. <i>Journal of Colloid and Interface Science</i> , 2003 , 261, 312-9	9.3	88
357	Coupling conducting polymers and mediated electrochemical responses for the detection of Listeria. <i>Analytica Chimica Acta</i> , 2003 , 475, 37-45	6.6	24
356	A comparison of reactive robot chemotaxis algorithms. <i>Robotics and Autonomous Systems</i> , 2003 , 45, 83-	93 .5	175
355	Quartz crystal microbalance studies of the effect of solution temperature on the ion-exchange properties of polypyrrole conducting electroactive polymers. <i>Reactive and Functional Polymers</i> , 2003 , 56, 141-146	4.6	52
354	ATR-IR spectroscopic studies of the influence of phosphate buffer on adsorption of immunoglobulin G to TiO2. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 220, 159-167	5.1	31
353	Recovery of gold cyanide using inherently conducting polymers. <i>Polymer International</i> , 2003 , 52, 51-55	3.3	13
352	Preparation and characterization of processable electroactive polyanilinepolyvinyl alcohol composite. <i>Polymer</i> , 2003 , 44, 3523-3528	3.9	112
351	Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes. <i>Electrochimica Acta</i> , 2003 , 48, 2355-2359	6.7	132
350	Use of Ionic Liquids as Electrolytes in Electromechanical Actuator Systems Based on Inherently Conducting Polymers. <i>Chemistry of Materials</i> , 2003 , 15, 2392-2398	9.6	247

(2003-2003)

349	Conducting polymers electromechanical actuators and strain sensors. <i>Macromolecular Symposia</i> , 2003 , 192, 161-170	0.8	33
348	Electrochemical Properties of Single-Wall Carbon Nanotube Electrodes. <i>Journal of the Electrochemical Society</i> , 2003 , 150, E409	3.9	79
347	Factors Influencing the Performance of Inherently Conducting Polymers as Corrosion Inhibitors: The Dopant. <i>ACS Symposium Series</i> , 2003 , 103-123	0.4	11
346	High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects. <i>Synthetic Metals</i> , 2003 , 138, 391-398	3.6	120
345	The Effect of Added Water on the Conformation of Optically Active Polyaniline in Organic Solvents. <i>Synthetic Metals</i> , 2003 , 135-136, 241-242	3.6	8
344	Directed electrochemical deposition of conducting polymer filament on screen-printed array. <i>Synthetic Metals</i> , 2003 , 135-136, 29-30	3.6	5
343	Conducting Polymer Electrochemistry in Ionic Liquids Synthetic Metals, 2003, 135-136, 31-32	3.6	38
342	Electron transfer mediated deposition of conducting polymers on active metals. <i>Synthetic Metals</i> , 2003 , 135-136, 33-34	3.6	20
341	Gold recovery using fabrics coated with conducting polymers. Synthetic Metals, 2003, 135-136, 35-36	3.6	6
340	Actuators for the cochlear implant. Synthetic Metals, 2003, 135-136, 39-40	3.6	18
339	Functionalised poly(terthiophenes). Synthetic Metals, 2003, 135-136, 97-98	3.6	13
338	Conformational Changes in Sulfonated Polyaniline Caused By Metal Salts and OH <i>Synthetic Metals</i> , 2003 , 135-136, 289-290	3.6	34
337	Photovoltaic devices based on poly(bis-terthiophenes) and substituted poly(bisterthiophene). <i>Synthetic Metals</i> , 2003 , 137, 1373-1374	3.6	11
336	Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes. <i>Synthetic Metals</i> , 2003 , 137, 1393-1394	3.6	114
335	Investigation of conducting polymer materials for sensor array. Synthetic Metals, 2003, 137, 1445-1446	3.6	5
334	Carbon nanotube and polyaniline composite actuators*. Smart Materials and Structures, 2003, 12, 626-6	3 ₃ 2. ₄	165
333	The amounts per cycle of polypyrrole electromechanical actuators. <i>Smart Materials and Structures</i> , 2003 , 12, 468-472	3.4	29
332	Ionic liquids and polypyrrole helix tubes: bringing the electronic Braille screen closer to reality 2003 ,		14

331	Electroactive polymer actuator devices (EAPAD) 2003,		4
330	Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. <i>Smart Materials and Structures</i> , 2003 , 12, 549-555	3.4	48
329	Pneumatic Carbon Nanotube Actuators. Advanced Materials, 2002, 14, 1728-1732	24	170
328	Development of Conducting Polymer Modified Electrodes for the Detection of Phenol. <i>Electroanalysis</i> , 2002 , 14, 325-332	3	19
327	Development of Conducting Polymer Coated Screen-Printed Sensors for Measurement of Volatile Compounds. <i>Electroanalysis</i> , 2002 , 14, 575	3	7
326	Strain Response from Polypyrrole Actuators under Load. Advanced Functional Materials, 2002 , 12, 437-4	140 5.6	164
325	Electroactive conducting polymers for corrosion control. <i>Journal of Solid State Electrochemistry</i> , 2002 , 6, 85-100	2.6	386
324	Electroactive conducting polymers for corrosion control. <i>Journal of Solid State Electrochemistry</i> , 2002 , 6, 73-84	2.6	474
323	Electrohydrodynamic synthesis of polypyrrole coated polyurethane colloidal dispersions using the electrocatalyst Tiron. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2002 , 207, 1-12	5.1	7
322	Polypyrrolefleparin system for the separation of thrombin. <i>Reactive and Functional Polymers</i> , 2002 , 53, 53-62	4.6	20
321	Immobilisation of anti-Listeria in a polypyrrole film. Reactive and Functional Polymers, 2002, 53, 217-227	' 4.6	33
320	Preparation, characterisation and biosensor application of conducting polymers based on ferrocene substituted thiophene and terthiophene. <i>Electrochimica Acta</i> , 2002 , 47, 2715-2724	6.7	72
319	Conducting polymer sensors for monitoring aromatic hydrocarbons using an electronic nose. <i>Sensors and Actuators B: Chemical</i> , 2002 , 84, 252-257	8.5	52
318	Mechanism of electropolymerisation of methyl methacrylate and glycidyl acrylate on stainless steel. <i>Electrochimica Acta</i> , 2002 , 47, 1935-1948	6.7	27
317	Redox-active conducting polymers incorporating ferrocenes. Preparation, characterization and bio-sensing properties of ferrocenylpropyl and -butyl polypyrroles. <i>Electrochimica Acta</i> , 2002 , 47, 4227-	4238	34
316	Study on the formation of the Prussian blue films on the polypyrrole surface as a potential mediator system for biosensing applications. <i>Analytica Chimica Acta</i> , 2002 , 472, 113-121	6.6	38
315	Inherently Conducting Polymer Nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2002 , 2, 441-451	1.3	65
314	Carbon nanotube and polyaniline composite actuators 2002 , 4935, 26		

(2001-2002)

313	Direct Electrodeposition of Polypyrrole on Aluminum and Aluminum Alloy by Electron Transfer Mediation. <i>Journal of the Electrochemical Society</i> , 2002 , 149, C173	3.9	117
312	Use of ionic liquids for pi-conjugated polymer electrochemical devices. <i>Science</i> , 2002 , 297, 983-7	33.3	1058
311	Effect of electron withdrawing or donating substituents on the photovoltaic performance of polythiophenes. <i>Synthetic Metals</i> , 2002 , 128, 35-42	3.6	38
310	Electrochemical behaviour of polypyrrole/sulfated poly(Ehydroxyether) composites. <i>Synthetic Metals</i> , 2002 , 129, 67-71	3.6	2
309	A de-doping/re-doping study of organic soluble polyaniline. <i>Synthetic Metals</i> , 2002 , 129, 165-172	3.6	55
308	Inherently conducting polymer nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2002 , 2, 441-51	1.3	2
307	Polypyrrole membranes containing chelating ligands: synthesis, characterisation and transport studies. <i>Polymer</i> , 2001 , 42, 8571-8579	3.9	48
306	Electrochemically controlled transport of metal ions across polypyrrole membranes using a flow-through cell. <i>Reactive and Functional Polymers</i> , 2001 , 49, 87-98	4.6	29
305	Electroactive-conducting polymers for corrosion control. <i>Progress in Organic Coatings</i> , 2001 , 43, 149-15	74.8	65
304	Electrochemically driven actuators from conducting polymers, hydrogels, and carbon nanotubes 2001 ,		4
303	Interrupted blood-feeding by Culiseta melanura (Diptera: Culicidae) on European starlings. <i>Journal of Medical Entomology</i> , 2001 , 38, 59-66	2.2	26
302	Conducting polymer, carbon nanotube, and hybrid actuator materials 2001 , 4329, 199		6
301	Synthesis, characterisation and ion transport studies on polypyrrole/deoxyribonucleic acid conducting polymer membranes. <i>Synthetic Metals</i> , 2001 , 123, 279-286	3.6	30
300	Investigation of the applied potential limits for polypyrrole when employed as the active components of a two-electrode device. <i>Synthetic Metals</i> , 2001 , 122, 379-385	3.6	35
299	Photovoltaic devices based on polythiophenes and substituted polythiophenes. <i>Synthetic Metals</i> , 2001 , 123, 53-60	3.6	50
298	Communicating with the building blocks of life using organic electronic conductors. <i>Synthetic Metals</i> , 2001 , 119, 39-42	3.6	31
297	Polyanilines with a twist. Synthetic Metals, 2001, 119, 101-102	3.6	11
296	Metal separation using polypyrroles containing chelating agents. Synthetic Metals, 2001, 119, 373-374	3.6	5

5.1

12

Transport of gold across composite poly(bithiophene) membranes. Synthetic Metals, 2001, 119, 357-358 3.6 295 4 Electrochemical synthesis of pyrrole through a polystyrene opal matrix. Synthetic Metals, 2001, 121, 1501, d 50219 294 Photoelectrochemical cells based on polymers and copolymers from terthiophene and 3.6 293 39 nitrostyrylterthiophene. Synthetic Metals, 2001, 123, 225-237 Study of the surface potential and photovoltage of conducting polymers using electric force 3.6 292 microscopy. Synthetic Metals, 2001, 124, 407-414 Current Chemistry: Separation and Recovery of Gold and Other Metals Using Conducting Polymers. 1.2 291 11 Australian Journal of Chemistry, 2001, 54, 615 Pneumatic Actuator Response from Carbon Nanotube Sheets. Materials Research Society Symposia Proceedings, **2001**, 706, 1 Chiral Induction in the Acid Doping of Poly(o-methoxyaniline). Australian Journal of Chemistry, 2000, 289 1.2 11 53,89 The Use of Cyclic Voltammetry and Principal Component Analysis for the Rapid Evaluation of 288 Selectivity of Conductive Polymer Sensors. *Electroanalysis*, **2000**, 12, 89-95 Aligned Coaxial Nanowires of Carbon Nanotubes Sheathed with Conducting Polymers. Angewandte 287 3.6 22 Chemie, **2000**, 112, 3810-3813 Aligned Coaxial Nanowires of Carbon Nanotubes Sheathed with Conducting Polymers M.G. is grateful for a joint scholarship from Wollongong University and CSIRO; S.H. and L.D. thank the 286 16.4 218 support from the Department of Industry, Science, and Technology (DIST), Australia; R.P.G. and Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous 285 6.7 78 and non-aqueous solutions. *Electrochimica Acta*, **2000**, 46, 509-517 Electrochemical studies of single-wall carbon nanotubes in aqueous solutions. Journal of 284 4.1 218 Electroanalytical Chemistry, **2000**, 488, 92-98 283 Electroformation of conducting polymers in a hydrogel support matrix. Polymer, 2000, 41, 1783-1790 3.9 57 Electrohydrodynamic polymerisation of water-soluble poly((4-(3-pyrrolyl)))butane sulfonate). 282 3.9 Polymer, 2000, 41, 4065-4076 Protein transport and separation using polypyrrole coated, platinised polyvinylidene fluoride 281 4.6 19 membranes. Reactive and Functional Polymers, 2000, 45, 217-226 Preparation and characterisation of processable conducting polymerflydrogel composites. 280 4.6 30 Reactive and Functional Polymers, 2000, 44, 31-40 Incorporation of novel polyelectrolyte dopants into conducting polymers. Reactive and Functional 279 4.6 14 Polymers, 2000, 44, 245-258 Effect of an intermediate on the amperometric response of a polypyrrole-based formate

biosensing membrane. Electrochemistry Communications, 2000, 2, 27-31

(1999-2000)

277	stabilised by polyvinylphosphate dopant. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2000 , 175, 291-301	5.1	13
276	Factors affecting the yield of polypyrrole colloids produced under electrohydrodynamic conditions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2000 , 167, 201-208	5.1	1
275	Characterisation of olive oil by an electronic nose based on conducting polymer sensors. <i>Sensors and Actuators B: Chemical</i> , 2000 , 63, 1-9	8.5	85
274	Characterisation of the topography and surface potential of electrodeposited conducting polymer films using atomic force and electric force microscopies. <i>Electrochimica Acta</i> , 2000 , 46, 519-531	6.7	62
273	Conducting Polyaniline/Calixarene Salts: Synthesis and Properties. <i>Macromolecules</i> , 2000 , 33, 7044-709	50 5.5	38
272	Electrochemical properties of aligned nanotube arrays: basis of new electromechanical actuators 2000 ,		11
271	Evaluation of solid polymer electrolytes for use in conducting polymer/nanotube actuators 2000,		1
270	Development of polypyrrole-based electromechanical actuators. <i>Synthetic Metals</i> , 2000 , 113, 121-127	3.6	163
269	Electrohydrodynamic polymerization of 2-methoxyaniline-5-sulfonic acid. <i>Synthetic Metals</i> , 2000 , 114, 267-272	3.6	30
268	Electrosynthesis and characterisation of poly(2-methoxyaniline-5-sulfonic acid)-effect of pH control. <i>Synthetic Metals</i> , 2000 , 114, 287-293	3.6	30
267	Electrosynthesis of polyurethane-based core-shell PAn[[+)-HCSA colloids. <i>Synthetic Metals</i> , 2000 , 114, 313-320	3.6	20
266	Synthesis and properties of a mechanically strong poly(bithiophene) composite polymer containing a polyelectrolyte dopant. <i>Synthetic Metals</i> , 2000 , 110, 123-132	3.6	22
265	Conducting Polymers and Corrosion III. A Scanning Vibrating Electrode Study of Poly(3-octyl pyrrole) on Steel and Aluminum. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 3667	3.9	70
264	Optically active polypyrroles containing chiral dopant anions. <i>Australian Journal of Chemistry</i> , 2000 , 53, 83	1.2	9
263	Electrochemical Synthesis and Chiroptical Properties of Optically Active Poly(o-methoxyaniline). <i>Macromolecules</i> , 2000 , 33, 3237-3243	5.5	51
262	Electrochemical Characterization of Single-Walled Carbon Nanotube Electrodes. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 4580	3.9	134
261	Synthesis and characterisation of polypyrrole/heparin composites. <i>Reactive and Functional Polymers</i> , 1999 , 39, 19-26	4.6	47
260	Electrochemical production of protein-containing polypyrrole colloids. <i>Reactive and Functional Polymers</i> , 1999 , 39, 269-275	4.6	11

259	Polypyrrole based cation transport membranes. <i>Journal of Membrane Science</i> , 1999 , 152, 61-70	9.6	33
258	Conducting electroactive polymer-based biosensors. <i>TrAC - Trends in Analytical Chemistry</i> , 1999 , 18, 245	5-25.6	141
257	In-situ electrochemical studies on the redox properties of polypyrrole in aqueous solutions. <i>European Polymer Journal</i> , 1999 , 35, 1761-1772	5.2	53
256	Human endothelial cell attachment to and growth on polypyrrole-heparin is vitronectin dependent. Journal of Materials Science: Materials in Medicine, 1999 , 10, 19-27	4.5	81
255	Carbon nanotube actuators. <i>Science</i> , 1999 , 284, 1340-4	33.3	2040
254	Polypyrrole-heparin composites as stimulus-responsive substrates for endothelial cell growth. Journal of Biomedical Materials Research Part B, 1999 , 44, 121-9		231
253	Incorporation of Erythrocytes into Polypyrrole to Form the Basis of a Biosensor to Screen for Rhesus (D) Blood Groups and Rhesus (D) Antibodies. <i>Electroanalysis</i> , 1999 , 11, 215-222	3	120
252	The Use of Chronoamperometry and Chemometrics for Optimization of Conducting Polymer Sensor Arrays. <i>Electroanalysis</i> , 1999 , 11, 1327-1332	3	14
251	Electrofunctional polymers: their role in the development of new analytical systems. <i>Analyst, The</i> , 1999 , 124, 213-219	5	84
250	Synthesis, characterisation and ion transport studies on polypyrrole/polyvinylphosphate conducting polymer materials. <i>Synthetic Metals</i> , 1999 , 99, 191-199	3.6	40
249	Development of an all-polymer, axial force electrochemical actuator. Synthetic Metals, 1999, 102, 1317-	·13368	38
248	Properties of chiral polyaniline in various oxidation states. <i>Synthetic Metals</i> , 1999 , 101, 817-818	3.6	21
247	Porous conducting membranes based on polypyrrole PMMA composites. <i>Synthetic Metals</i> , 1999 , 99, 121-126	3.6	30
246	Development of membrane systems based on conducting polymers. <i>Synthetic Metals</i> , 1999 , 102, 1338-	13,461	51
245	Electrochemical preparation of chiral polyaniline nanocomposites. <i>Synthetic Metals</i> , 1999 , 106, 89-95	3.6	32
244	Optically active sulfonated polyanilines. <i>Synthetic Metals</i> , 1999 , 106, 129-137	3.6	35
243	Facile preparation of optically active polyanilines via the in situ chemical oxidative polymerisation of aniline. <i>Synthetic Metals</i> , 1999 , 106, 171-176	3.6	64
242	Applied potential limits for polypyrrole in a two-electrode device 1999 , 3669, 272		O

241	Polypyrrolefleparin composites as stimulus-responsive substrates for endothelial cell growth 1999 , 44, 121		1
240	Characterisation and analytical use of a polypyrrole electrode containing anti-human serum albumin. <i>Analytica Chimica Acta</i> , 1998 , 371, 39-48	6.6	34
239	Use of Prussian Blue/Conducting Polymer Modified Electrodes for the Detection of Cytochrome C. <i>Electroanalysis</i> , 1998 , 10, 472-476	3	36
238	Protein Detection Using Conducting Polymer Microarrays. <i>Electroanalysis</i> , 1998 , 10, 1101-1107	3	16
237	Factors affecting the electrochemical formation of polypyrrole-nitrate colloids. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1998 , 137, 295-300	5.1	9
236	Polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) polymer composite. <i>Polymer Gels and Networks</i> , 1998 , 6, 233-245		24
235	Effective diffusion of electroactive species on hydrogel modified ultramicroelectrodes. <i>Polymer Gels and Networks</i> , 1998 , 6, 383-391		3
234	Synthesis, characterisation and transport properties of layered conducting electroactive polypyrrole membranes. <i>Journal of Membrane Science</i> , 1998 , 148, 161-172	9.6	35
233	Electrochemical induced ductile B rittle transition in tosylate-doped (pTS) polypyrrole. <i>Synthetic Metals</i> , 1998 , 97, 117-121	3.6	26
232	Electrochemical Formation of Chiral Polyaniline Colloids Codoped with (+)- or (I-10-Camphorsulfonic Acid and Polystyrene Sulfonate. <i>Macromolecules</i> , 1998 , 31, 6521-6528	5.5	56
231	Enzymatic sensor based on conducting polymer coatings on metallised membranes. <i>Analytical Communications</i> , 1998 , 35, 245-248		9
230	Synthesis and Polymerization of Chiral Acrylamidosulfonic Acids. <i>Macromolecules</i> , 1998 , 31, 8737-8743	5.5	5
229	Conducting Polmers as a Basis for Responsive Materials Systems. <i>Journal of Intelligent Material Systems and Structures</i> , 1998 , 9, 723-731	2.3	39
228	Thermochromism in Optically Active Polyaniline Salts. <i>Macromolecules</i> , 1998 , 31, 6529-6533	5.5	44
227	Electrochemical Synthesis of Optically Active Polyanilines. <i>Australian Journal of Chemistry</i> , 1998 , 51, 23	1.2	22
226	Dynamic Polymeric Membrane Structures for Separation of Proteins. <i>Journal of Intelligent Material Systems and Structures</i> , 1997 , 8, 1052-1058	2.3	4
225	Electroassembly of smart polymer structures (role of polyelectrolytes) 1997 , 3040, 160		
224	Development of an electronic nose 1997 , 3242, 164		2

223	Communicative Polymers: The Basis for Development of Intelligent Material. <i>Journal of Chemical Education</i> , 1997 , 74, 703	2.4	8
222	Electrochemical Preparation of Conducting Polymer Colloids. <i>Synthetic Metals</i> , 1997 , 84, 361-362	3.6	8
221	The effect of different electrical stimuli on the oxidation/reduction behaviour of polypyrrole-pts A Study Using the Electrochemical Quartz Crystal Microbalance. <i>Synthetic Metals</i> , 1997 , 84, 823-824	3.6	10
220	In-situ mechanical properties of tosylate doped (pts) polypyrrole. <i>Synthetic Metals</i> , 1997 , 84, 847-848	3.6	35
219	Preparation and preliminary characterization of a poly(4-vinylpyridine) complex of a water-soluble polyaniline. <i>Synthetic Metals</i> , 1997 , 90, 13-18	3.6	16
218	Optimisation of a polypyrrole based actuator. <i>Synthetic Metals</i> , 1997 , 85, 1419-1420	3.6	41
217	Factors controlling the induction of optical activity in chiral polyanilines. <i>Synthetic Metals</i> , 1997 , 84, 115	5-3.66	27
216	Preparation of chiral conducting polymer colloids. <i>Synthetic Metals</i> , 1997 , 84, 181-182	3.6	30
215	Novel conducting polymer-polyelectrolyte composites. <i>Synthetic Metals</i> , 1997 , 84, 323-326	3.6	20
214	Studies of the overoxidation of polypyrrole. <i>Synthetic Metals</i> , 1997 , 84, 403-404	3.6	66
213	Electrochemical preparation of polypyrrole colloids using a flow cell. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1997 , 126, 129-135	5.1	17
212	Responsive conducting polymer-hydrogel composites. <i>Polymer Gels and Networks</i> , 1997 , 5, 251-265		67
211	Studies of electropolymerisation of sodium 2-(3-thienyl)ethyl sulfonate. <i>Reactive and Functional Polymers</i> , 1997 , 34, 27-36	4.6	1
210	Ion transport membranes based on conducting polymers. <i>Journal of Membrane Science</i> , 1997 , 132, 245-	2536	37
209	Influence of the chiral dopant anion on the generation of induced optical activity in polyanilines. <i>Polymer</i> , 1997 , 38, 2627-2631	3.9	56
208	Conducting polymer sensors for the amperometric detection of proteins in a flow system I the use of sulfonated dye counterions to induce selectivity. <i>Electroanalysis</i> , 1997 , 9, 454-460	3	9
207	Amperometric detection of electroinactive anions using conducting polymer electrodes subsequent to chromatographic separation. <i>Electroanalysis</i> , 1997 , 9, 461-467	3	21
206	Detection of amino acids at conducting electroactive polymer modified electrodes using flow injection analysis. Part I. Use of macroelectrodes. <i>Analytica Chimica Acta</i> , 1997 , 339, 201-209	6.6	68

205	Detection of amino acids at conducting electroactive polymer modified electrodes using flow injection analysis. Part II. Use of microelectrodes. <i>Analytica Chimica Acta</i> , 1997 , 339, 211-223	6.6	59
204	Pulsed-amperometric detection of urea in blood samples on a conducting polypyrrole-urease biosensor. <i>Analytica Chimica Acta</i> , 1997 , 341, 155-160	6.6	53
203	Detection of haloacetic acids at conductive electroactive polymer-modified microelectrodes. <i>Analytica Chimica Acta</i> , 1997 , 341, 141-153	6.6	20
202	Synthesis and Characterization of Chiral Conducting Polymers Based on Polypyrrole. <i>Australian Journal of Chemistry</i> , 1997 , 50, 939	1.2	8
201	Conducting polymers and the bioanalytical sciences: new tools for biomolecular communication. A review. <i>Analyst, The</i> , 1996 , 121, 699-703	5	137
200	Flux of surface-active organic complexes of copper to the air-sea interface in coastal marine waters. <i>Journal of Geophysical Research</i> , 1996 , 101, 12017-12026		5
199	Chracterization of polyaniline using chromatographic studies. <i>Chromatographia</i> , 1996 , 42, 191-198	2.1	9
198	Effect of thermal treatment on the electroactivity of polyaniline. <i>Polymer</i> , 1996 , 37, 917-923	3.9	37
197	Detection of cytochrome c using a conducting polymer mediator containing electrode. <i>Electroanalysis</i> , 1996 , 8, 248-252	3	11
196	Studies of the preparation and analytical application of polypyrrole-coated microelectrodes for determination of aluminum. <i>Electroanalysis</i> , 1996 , 8, 330-335	3	17
195	Development of a conducting polymer-based microelectrode array detection system. <i>Electroanalysis</i> , 1996 , 8, 623-629	3	19
194	Controlled continuous production of conducting polypyrrole tapes I: Process control development. <i>Polymers for Advanced Technologies</i> , 1996 , 7, 442-450	3.2	2
193	Polypyrrole-based amperometric flow injection biosensor for urea. <i>Analytica Chimica Acta</i> , 1996 , 323, 107-113	6.6	87
192	Electroimmobilisation of sulphite oxidase into a polypyrrole film and its utilisation for flow amperometric detection of sulphite. <i>Analytica Chimica Acta</i> , 1996 , 332, 145-153	6.6	37
191	Parameters influencing transport across conducting electroactive polymer membranes. <i>Journal of Membrane Science</i> , 1996 , 119, 199-212	9.6	43
190	Facile synthesis of optically active polyaniline and polytoluidine. <i>Polymer</i> , 1996 , 37, 359-362	3.9	56
189	Bulk electropolymerization of alkylpyrroles. <i>Polymer</i> , 1996 , 37, 2811-2819	3.9	32
188	Integration of biocomponents with synthetic structures: use of conducting polymer polyelectrolyte composites 1996 , 2716, 164		18

187	Assembly of conducting polymer networks inside hydrogel structures 1996,		1
186	Redox Chromatography Using Polypyrrole as a Stationary Phase. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1996 , 19, 2457-2476	1.3	7
185	Cellular communication with conducting electroactive polymers 1996 , 309-310		
184	Communicating with the Building Blocks of Life Using Advanced Macromolecular Transducers 1996 , 13	B-17	
183	Electrodeposition of polyaniline and polyaniline composites from colloidal dispersions. <i>Polymer International</i> , 1995 , 37, 87-91	3.3	34
182	Electrochemically controlled transport in a dual conducting polymer membrane system. <i>Journal of Membrane Science</i> , 1995 , 98, 173-176	9.6	33
181	Electrochemically controlled transport of small charged organic molecules across conducting polymer membranes. <i>Journal of Membrane Science</i> , 1995 , 100, 239-248	9.6	38
180	Iron(II) in rainwater, snow, and surface seawater from a coastal environment. <i>Marine Chemistry</i> , 1995 , 50, 41-50	3.7	58
179	The formation of surface-active organic complexes of copper in coastal marine waters. <i>Marine Chemistry</i> , 1995 , 51, 145-157	3.7	9
178	In situ characterization of conducting polymers by measuring dynamic contact angles with Wilhelmy's plate technique. <i>Reactive & Functional Polymers</i> , 1995 , 24, 157-164		22
177	Electrochemical production of conducting polymer colloids. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1995 , 103, 281-288	5.1	31
176	Chemical generation of optically active polyaniline via the doping of emeraldine base with (+)- or (?)-camphorsulfonic acid. <i>Polymer</i> , 1995 , 36, 3597-3599	3.9	107
175	Coaxing Predictable Behaviour from Unstable (Intelligent) Polymer Systems: Processing Dynamic Systems. <i>Journal of Intelligent Material Systems and Structures</i> , 1995 , 6, 301-306	2.3	
174	Mechanism of electromechanical actuation in polypyrrole. <i>Synthetic Metals</i> , 1995 , 73, 247-256	3.6	239
173	Pulsed electrochemical detection of proteins using conducting polymer based sensors. <i>Analytica Chimica Acta</i> , 1995 , 315, 27-32	6.6	33
172	A simple electropolymerization method for the production of microarray electrodes. <i>Electroanalysis</i> , 1995 , 7, 346-349	3	1
171	Development of an improved on-line chromatographic monitor with new methods for environmental and process control. <i>Analytica Chimica Acta</i> , 1995 , 310, 79-92	6.6	2
170	Communicating with Responsive Intelligent Membranes 1995 , 709-718		1

169	Film substructure and mechanical properties of electrochemically prepared polypyrrole 1995 , 36, 4761-	4761	13
168	Scratching the Surface of Intelligent Materials: Characterisation Methods for Conducting Polymer Films. <i>Journal of Intelligent Material Systems and Structures</i> , 1994 , 5, 605-611	2.3	3
167	Studies on Poly (3-Octadecyl Pyrrole) Modified Silica as a Reversed Phase HPLC Packing Material. Journal of Liquid Chromatography and Related Technologies, 1994 , 17, 1301-1316		3
166	Determination of P-Cresol (and Other Phenolics) Using a Conducting Polymer Based Electro-Immunological Sensing System. <i>Analytical Letters</i> , 1994 , 27, 2417-2429	2.2	30
165	Electrochemical production of polypyrrole colloids. <i>Polymer</i> , 1994 , 35, 3801-3803	3.9	27
164	Influence of steric stabilizers on the electropolymerization and properties of polypyrroles. <i>Polymer</i> , 1994 , 35, 1754-1758	3.9	26
163	Preparation of hydrogel/conducting polymer composites. <i>Polymer Gels and Networks</i> , 1994 , 2, 135-143		46
162	Characterising the chemical interactions that occur on polyaniline with inverse thin layer chromatography. <i>Polymer International</i> , 1994 , 35, 197-205	3.3	11
161	Electropolymerisation of pyrrole under hydrodynamic conditions affect of solution additives. <i>Electrochimica Acta</i> , 1994 , 39, 1409-1413	6.7	20
160	Design and evaluation of photoelectrochemical flow cells. <i>Electroanalysis</i> , 1994 , 6, 209-215	3	3
159	Detection of electroinactive ions using conducting polymer microelectrodes. <i>Electroanalysis</i> , 1994 , 6, 860-864	3	61
158	Polypyrrole-based amperometric biosensor for sulfite determination. <i>Electroanalysis</i> , 1994 , 6, 865-870	3	33
157	Transport across stand-alone conducting polypyrrole membranes containing dodecylsulfate counterions. <i>Reactive & Functional Polymers</i> , 1994 , 23, 213-220		24
156	Effect of the counterion employed during synthesis on the properties of polypyrrole membranes. Journal of Membrane Science, 1994 , 87, 47-56	9.6	50
155	Resistometry: A new characterization technique for conducting polymers. <i>Solid State Ionics</i> , 1994 , 70-71, 692-696	3.3	5
154	Enantioselective electropolymerization of aniline in the presence of (+)- or (I-camphorsulfonate ion: a facile route to conducting polymers with preferred one-screw-sense helicity. <i>Polymer</i> , 1994 , 35, 3113-3115	3.9	154
153	Effect of thermal treatment on the electrochemical properties of conducting polypyrrole polymers. <i>Polymer</i> , 1994 , 35, 2372-2377	3.9	16
152	Lead Deposition in the Shell of the Bivalve, Mya arenaria: an Indicator of Dissolved Lead in Seawater. <i>Estuarine, Coastal and Shelf Science</i> , 1994 , 39, 93-104	2.9	37

151	Factors influencing electrochemical release of 2,6-anthraquinone disulphonic acid from polypyrrole. <i>Journal of Controlled Release</i> , 1994 , 30, 137-142	11.7	28
150	Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and protein as controllable biocomposites for a new generation of Intelligent biomaterials \(\textit{\textit{Supramolecular}} \) Science, 1994 , 1, 77-83		53
149	The effect of the counterion on the electrochemical properties of conducting polymers la study using resistometry. <i>Synthetic Metals</i> , 1994 , 63, 83-88	3.6	25
148	Pulsed amperometric detection of thaumatin using antibody-containing poly(pyrrole) electrodes. <i>Analyst, The</i> , 1994 , 119, 1997	5	59
147	Performance on Demand IA New Era in Polymer Science (A Case Study Using Conducting Polymers) 1994 , 283-293		
146	Intelligent Polymer Membranes 1994 , 599-605		2
145	Adaptive Membrane Systems Based on Conductive Electroactive Polymers. <i>Journal of Intelligent Material Systems and Structures</i> , 1993 , 4, 43-49	2.3	48
144	Molecular recognition using conducting polymers: basis of an electrochemical sensing technology P lenary lecture. <i>Analyst, The</i> , 1993 , 118, 329-334	5	96
143	Separation of Small Molecules in the Presence of Proteins Using Conducting Polymer Stationary Phases. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1993 , 16, 95-108		5
142	Investigations into the Use of Poly (3-Methylpyrrole-4-Carboxylic Acid) Coated Silica as a Chromatographic Stationary Phase. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1993 , 16, 1023-1044		8
141	Inherently Conducting Polymers A Versatile and Adaptive Chemical Sensing System. <i>Journal of Intelligent Material Systems and Structures</i> , 1993 , 4, 123-128	2.3	7
140	Pulse damperometric detection of proteins using antibody containing conducting polymers. <i>Analytica Chimica Acta</i> , 1993 , 279, 209-212	6.6	76
139	Polypyrrole-based potentiometric biosensor for urea part 1. Incorporation of urease. <i>Analytica Chimica Acta</i> , 1993 , 281, 611-620	6.6	72
138	Polypyrrole-based potentiometric biosensor for urea. <i>Analytica Chimica Acta</i> , 1993 , 281, 621-627	6.6	57
137	Effect of polymer composition on the detection of electroinactive species using conductive polymers. <i>Electroanalysis</i> , 1993 , 5, 555-563	3	39
136	Interfacial analysis Lechniques for the study and characterisation of advanced materials. <i>TrAC</i> - <i>Trends in Analytical Chemistry</i> , 1993 , 12, 94-100	14.6	2
135	Electrochemically controlled transport across conducting polymer composites Basis of smart membrane materials. <i>Polymer Gels and Networks</i> , 1993 , 1, 61-77		32
134	Doping-dedoping of polypyrrole: a study using current-measuring and resistance-measuring techniques. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 354, 145-160	4.1	74

133	Transport of copper(II) across stand-alone conducting polypyrrole membranes: the effect of applied potential waveforms. <i>Polymer</i> , 1993 , 34, 16-20	3.9	32
132	Chemical polymerization of 3-methylpyrrole-4-carboxylic acid. <i>Polymer</i> , 1993 , 34, 2007-2010	3.9	4
131	Gut contents: a significant contaminant of Mytilus edulis whole body metal concentrations. <i>Archives of Environmental Contamination and Toxicology</i> , 1993 , 25, 415-21	3.2	18
130	Polypyrrole-coated silica as a new stationary phase for liquid chromatography. <i>Chromatographia</i> , 1993 , 37, 423-428	2.1	23
129	Electropolymerization of 4-(3-pyrrolyl)-4-oxobutyric acid by in situ potentiodynamic pre-reduction/oxidation. <i>Polymer</i> , 1993 , 34, 2684-2686	3.9	6
128	Determination of complexation capacity using coulometric stripping analysis. <i>Chemical Speciation and Bioavailability</i> , 1992 , 4, 143-147		
127	Use of Overoxidised Polypyrrole as a Chromium(VI) Sensor. <i>Analytical Letters</i> , 1992 , 25, 429-441	2.2	15
126	Interobserver agreement in the examination of acute ankle injury patients. <i>American Journal of Emergency Medicine</i> , 1992 , 10, 14-7	2.9	63
125	Factors influencing the rate of the electrochemical oxidation of heterocyclic monomers. <i>Polymer International</i> , 1992 , 27, 255-260	3.3	6
124	Use of inverse thin layer chromatography with amino acids to characterize molecular interactions on conducting polymers. <i>Polymer International</i> , 1992 , 29, 299-305	3.3	13
123	Ion exchange properties of polypyrrole. Reactive & Functional Polymers, 1992, 18, 133-140		42
122	Incorporation of proteins into conducting electroactive polymers. <i>Reactive & Functional Polymers</i> , 1992 , 18, 77-85		12
121	Application of pulsed photoelectrochemical detection. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 328, 195-208	4.1	3
120	Incorporation of various counter-ions during electropolymerization of 3-methylpyrrole-4-carboxylic acid. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 340, 41-52	4.1	6
119	Electrochemically controlled transport of potassium chloride across a conducting electro-active polymer membrane. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 334, 111-120	4.1	54
118	Properties of thermally treated polypyrroles. <i>Polymer</i> , 1992 , 33, 2348-2352	3.9	12
117	Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry. <i>Analytica Chimica Acta</i> , 1992 , 258, 317-324	6.6	15
116	Development of a polymer-based electrode for selective detection of dichloramine. <i>Analytica Chimica Acta</i> , 1992 , 263, 71-75	6.6	10

115	A new polymeric mercury thin-film electrode. <i>Electroanalysis</i> , 1992 , 4, 97-105	3	5
114	Photoelectrochemical detection and speciation of thallium (I) and thallium (III). <i>Electroanalysis</i> , 1992 , 4, 139-142	3	9
113	Removal of oxygen in flowing solutions using a photochemical process. <i>Electroanalysis</i> , 1992 , 4, 323-32	63	11
112	Photoelectrochemical detection of alcohols. <i>Electroanalysis</i> , 1992 , 4, 439-445	3	2
111	Development of a Self Compressed Column System. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1991 , 14, 1615-1629		3
110	The use of microelectrodes to probe the electropolymerization mechanism of heterocyclic conducting polymers. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1991 , 306, 157-167		95
109	Characterisation of conductive, electroactive polymers using resistometry. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1991 , 319, 365-371		25
108	High-performance liquid chromatography on polypyrrole-modified silica. <i>Journal of Chromatography A</i> , 1991 , 588, 25-31	4.5	34
107	Determination of anionic surfactants by bis(ethylenediamine)copper(II) extraction and anodic stripping voltammetry. <i>Analytica Chimica Acta</i> , 1991 , 244, 197-200	6.6	8
106	Electrochemical chromatography Backings, hardware and mechanisms of interaction. <i>Journal of Chromatography A</i> , 1991 , 544, 305-316	4.5	43
105	Development of a polypyrrole-based human serum albumin sensor. <i>Analytica Chimica Acta</i> , 1991 , 249, 381-385	6.6	71
104	Determination of gold using anion-exchange-based chemically modified electrodes. <i>Electroanalysis</i> , 1991 , 3, 191-195	3	13
103	The use of electropolymerization to produce new sensing surfaces: A review emphasizing electrode position of heteroaromatic compounds. <i>Electroanalysis</i> , 1991 , 3, 879-889	3	160
102	Intelligent Chemical Systems Based on Conductive Electroactive Polymers. <i>Journal of Intelligent Material Systems and Structures</i> , 1991 , 2, 228-238	2.3	21
101	Detection of Nitrite Using Electrodes Modified with an Electrodeposited Ruthenium-Containing Polymer. <i>Analytical Letters</i> , 1991 , 24, 2059-2073	2.2	29
100	Development of a polymer dispersed-mercury modified electrode. <i>Analytica Chimica Acta</i> , 1990 , 238, 345-350	6.6	15
99	Dispersed mercury microelectrodes using non-conducting polymer coatings. <i>Analytica Chimica Acta</i> , 1990 , 235, 451-455	6.6	5
98	Determination of trace amounts of chloramines by liquid chromatographic separation and amperometric detection. <i>Analytica Chimica Acta</i> , 1990 , 237, 149-153	6.6	20

97	The use of microelectrodes as substrates for chemically modified sensors. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 283, 87-98		24
96	Application of Modified Electrodes for Analysis in Flowing Solutions 1990 , 283-287		2
95	An Electrochemical Reactor for on-Line Oxidation of Chromium (III) to Chromium (VI). <i>Analytical Letters</i> , 1990 , 23, 1477-1486	2.2	1
94	Electrochemically Controlled Liquid Chromatography on Conducting Polymer Stationary Phases. Journal of Liquid Chromatography and Related Technologies, 1990 , 13, 3245-3260		28
93	New Conducting Polymer Affinity Chromatography Stationary Phases. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1990 , 13, 3091-3110		27
92	Controlled Release of the Dithiocarbamate Ligand From A Polypyrrole Polymer. A Basis For On-Line Electrochemicalycontrolled Derivatisation. <i>Analytical Letters</i> , 1989 , 22, 669-681	2.2	13
91	The use of chemisorbed electrocatalytic polymers for detection in flowing solutions. <i>Electroanalysis</i> , 1989 , 1, 245-250	3	23
90	Evaluation of flow-through photochemical reactors for liquid chromatography with electrochemical detection. <i>Electroanalysis</i> , 1989 , 1, 347-351	3	5
89	Stabilization of a ruthenium polymer-modified electrode for use in flowing solution analysis. <i>Electroanalysis</i> , 1989 , 1, 357-361	3	14
88	Selective determination of Cr(VI) oxyanions using a poly-3-methylthiophene-modified electrode. <i>Electroanalysis</i> , 1989 , 1, 541-547	3	29
87	Differential pulse voltammetric study of a typical anaerobic adhesive formulation coated on a glassy carbon electrode. <i>Analytica Chimica Acta</i> , 1989 , 217, 335-341	6.6	2
86	Characterization of novel conducting polymeric stationary phases and electrochemically controlled high-performance liquid chromatography. <i>Analytical Chemistry</i> , 1989 , 61, 2391-2394	7.8	39
85	Electrosynthesis of chromatographic stationary phases. <i>Analytical Chemistry</i> , 1989 , 61, 198-201	7.8	23
84	Research and development topics in Analytical Chemistry. <i>Analytical Proceedings</i> , 1989 , 26, 2		8
83	Preparation and application of conducting polymers containing chemically active counterions for analytical purposes. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1988 , 247, 145-156		60
82	Designing chemically modified electrodes for electroanalysis. <i>TrAC - Trends in Analytical Chemistry</i> , 1988 , 7, 143-147	14.6	18
81	Deposition and electrochemical stripping of mercury ions on polypyrrole based modified electrodes. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1988 , 246, 181-191		52
80	Invetigations into the use of an auxiliary metal ion for indirect amperometri detection. <i>Chromatographia</i> , 1988 , 25, 162-166	2.1	7

79	Instrumentation for 7-day continuous cycle monitoring of metals with automated on-line sample preparation, high-performance liquid chromatography, and electrochemical detection. <i>Analytical Chemistry</i> , 1988 , 60, 1357-1360	7.8	6
78	Separation and detection of metal ions using in-situ ligand exchange chromatography. <i>Analytical Chemistry</i> , 1988 , 60, 830-832	7.8	11
77	Metal Ion Uptake and Voltammetry on a Dithiocarbamate Containing Polymer Modified Electrode. <i>Analytical Letters</i> , 1988 , 21, 1969-1986	2.2	11
76	Chemically modified electrodes 1988 , 132-154		3
75	Determination of copper(II) and iron(III) in some anaerobic adhesive formulations using high-performance liquid chromatography. <i>Analyst, The</i> , 1987 , 112, 1555	5	5
74	Determination of metal ions using ion chromatography and indirect amperometric detection. <i>Analytical Chemistry</i> , 1987 , 59, 54-57	7.8	22
73	Determination of metals in urine by direct injection of sample, high-performanc liquid chromatography and electrochemical or spectrophotometric detection. <i>Analytica Chimica Acta</i> , 1986 , 182, 47-59	6.6	19
72	Separation of metal ions using in-situ complexation chromatography with ethyl xanthate and 1,10 phenanthroline as ligands. <i>Chromatographia</i> , 1986 , 22, 275-277	2.1	6
71	Poly(pyrrole-N-carbodithioate) electrode for electroanalysis. <i>Analytical Chemistry</i> , 1986 , 58, 128-131	7.8	64
70	A software-controlled system for automatic background correction in inductively coupled plasma-optical emission spectrometry. <i>Analytical Proceedings</i> , 1986 , 23, 18		3
69	Research and development topics in Analytical Chemistry. <i>Analytical Proceedings</i> , 1986 , 23, 5		15
68	Variable resistance to ectromelia (mousepox) virus among genera of Mus. <i>Current Topics in Microbiology and Immunology</i> , 1986 , 127, 319-22	3.3	20
67	Effect of ternary complex formation on chromatographic selectivity using in situ complexation chromatography. <i>Analytical Chemistry</i> , 1985 , 57, 1354-1358	7.8	9
66	Dissolved oxygen: the electroanalytical chemists dilemma. <i>TrAC - Trends in Analytical Chemistry</i> , 1985 , 4, 145-148	14.6	15
65	Modified electrodes. <i>Analytical Proceedings</i> , 1985 , 22, 199		2
64	Genetic determinants of resistance to ectromelia (mousepox) virus-induced mortality. <i>Journal of</i>	6.6	40
	<i>Virology</i> , 1985 , 55, 890-1		
63	Preparation of metal dithiocarbamate complexes for chromatographic separation and multi-element determinations. <i>Analytica Chimica Acta</i> , 1984 , 164, 223-232	6.6	25

61	Influence of oxygen insertion on the electrochemistry of chromium(III) dithiocarbamate complexes. <i>Inorganic Chemistry</i> , 1984 , 23, 1858-1865	5.1	10
60	Automated determination of nickel and copper by liquid chromatography with electrochemical and spectrophotometric detection. <i>Analytical Chemistry</i> , 1983 , 55, 718-723	7.8	44
59	Organic material in the global troposphere. <i>Reviews of Geophysics</i> , 1983 , 21, 921	23.1	218
58	Simultaneous Determination of Cadmium, Cobalt, Copper, Lead, Mercury and Nickel in Zinc Sulfate Plant Electrolyte Using Liquid Chromatography with Electrochemical and Spectrophotometric Detection. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1983 , 6, 1799-1822		24
57	Behavior of copper in southeastern United States estuaries. <i>Marine Chemistry</i> , 1983 , 12, 183-193	3.7	74
56	Evaluation of an enzyme-linked immunosorbent assay for the detection of ectromelia (mousepox) antibody. <i>Journal of Clinical Microbiology</i> , 1983 , 18, 1220-5	9.7	24
55	The biogeochemical fate and toxicity of mercury in Controlled Experimental Ecosystems. <i>Estuarine, Coastal and Shelf Science</i> , 1982 , 15, 151-182	2.9	15
54	Simultaneous determination of copper, nickel, cobalt, chromium(VI), and chromium(III) by liquid chromatography with electrochemical detection. <i>Analytical Chemistry</i> , 1982 , 54, 1706-1712	7.8	72
53	Simultaneous determination of free sulfide and cyanide by ion chromatography with electrochemical detection. <i>Analytical Chemistry</i> , 1982 , 54, 582-585	7.8	61
52	Transient electrochemical techniques in liquid chromatography with microprocessor-based instrumentation. <i>Analytical Chemistry</i> , 1982 , 54, 1702-1705	7.8	22
51	The association of copper, mercury and lead with surface-active organic matter in coastal seawater. <i>Marine Chemistry</i> , 1982 , 11, 379-394	3.7	35
50	Determination of copper as a dithiocarbamate complex by reverse-phase liquid chromatography with electrochemical detection. <i>Analytical Chemistry</i> , 1981 , 53, 1209-1213	7.8	44
49	Re: "association of cats and toxoplasmosis". American Journal of Epidemiology, 1981, 113, 198-201	3.8	6
48	First-order removal of particulate aluminium in oceanic surface layers. <i>Nature</i> , 1981 , 293, 729-731	50.4	24
47	Mouse pox threat. <i>Science</i> , 1981 , 211, 438	33.3	5
46	Malonaldehyde in cervical mucus associated with copper IUD. <i>Lancet, The</i> , 1980 , 1, 1087-8	40	4
45	Polarographic method for the determination of propanedial (malonaldehyde). <i>Analytical Chemistry</i> , 1980 , 52, 2211-2213	7.8	11
44	Transmission of toxoplasmosis by tachyzoites: possibility and probability of a hypothesis. <i>Medical Hypotheses</i> , 1979 , 5, 529-32	3.8	2

43	Clinical manifestations of eosinophilic memingitis due to Angiostrongylus cantonensis. <i>Neurology</i> , 1979 , 29, 1566-70	6.5	57
42	Open-ocean transport of particulate trace metals by bubbles. <i>Deep-sea Research</i> , 1978 , 25, 827-835		22
41	Stirring influences the phytoplankton species composition within enclosed columns of coastal sea water. <i>Journal of Experimental Marine Biology and Ecology</i> , 1978 , 32, 219-239	2.1	47
40	Transport of particulate organic matter by bubbles in marine waters 1. <i>Limnology and Oceanography</i> , 1978 , 23, 1155-1167	4.8	44
39	Observations on the natural history of encephalomyocarditis virus. <i>American Journal of Tropical Medicine and Hygiene</i> , 1978 , 27, 133-43	3.2	37
38	Filter washing, a simple means of reducing blank values and variability in trace metal environmental samples. <i>Journal of Environmental Science and Health Part A, Environmental Science and Engineering</i> , 1977 , 12, 493-506		7
37	The influence of organic matter and atmospheric deposition on the particulate trace metal concentration of northwest Atlantic surface seawater. <i>Marine Chemistry</i> , 1977 , 5, 143-170	3.7	60
36	The prevalence of toxoplasmosis on Pacific Islands, and the influence of ethnic group. <i>American Journal of Tropical Medicine and Hygiene</i> , 1976 , 25, 48-53	3.2	15
35	Concentration of particulate trace metals and particulate organic carbon in marine surface waters by a bubble flotation mechanism. <i>Marine Chemistry</i> , 1975 , 3, 157-181	3.7	53
34	Observations on a feline coccidium with some characteristics of Toxoplasma and Sarcocystis. <i>Zeitschrift Fil Parasitenkunde (Berlin, Germany)</i> , 1975 , 46, 167-78		24
33	Besnoitia species (Protozoa, Sporozoa, Toxoplasmatidae): recognition of cyclic transmission by cats. <i>Science</i> , 1975 , 188, 369-71	33.3	54
32	Evidence for persistence of infectious agents in isolated human populations. <i>American Journal of Epidemiology</i> , 1974 , 100, 230-50	3.8	129
31	Toxoplasmosis and cats in New Guinea. American Journal of Tropical Medicine and Hygiene, 1974, 23, 8-1	43.2	14
30	Sarcocystis in mice inoculated with toxoplasma-like oocysts from cat feces. <i>Science</i> , 1973 , 180, 1375-7	33.3	22
29	The role of the cat in the natural history of Toxoplasma gondii. <i>American Journal of Tropical Medicine and Hygiene</i> , 1973 , 22, 313-22	3.2	42
28	Intermediate and transport hosts in the natural history of Toxoplasma gondii. <i>American Journal of Tropical Medicine and Hygiene</i> , 1973 , 22, 456-64	3.2	34
27	Experimental transmission of Toxoplasma gondii by cockroaches. <i>Journal of Infectious Diseases</i> , 1972 , 126, 545-7	7	49
26	Cats, rats, and toxoplasmosis on a small Pacific island. <i>American Journal of Epidemiology</i> , 1972 , 95, 475-	8 3 .8	41

25	Isolation of Toxoplasma gondii from the feces of naturally infected cats. <i>Journal of Infectious Diseases</i> , 1971 , 124, 227-8	7	42
24	Experimental transmission of Toxoplasma gondii by filth-flies. <i>American Journal of Tropical Medicine and Hygiene</i> , 1971 , 20, 411-3	3.2	42
23	Serologic and epidemiologic observations on toxoplasmosis on three Pacific atolls. <i>American Journal of Epidemiology</i> , 1969 , 90, 103-11	3.8	63
22	Studies on eosinophilic meningitis. VI. Experimental infection of rats and other homoiothermic vertebrates with Angiostrongylus cantonensis. <i>American Journal of Epidemiology</i> , 1969 , 89, 331-44	3.8	18
21	Experimental Infection of Pacific Island Mollusks with Angiostrongylus Cantonensis. <i>American Journal of Tropical Medicine and Hygiene</i> , 1969 , 18, 13-19	3.2	8
20	Studies on Eosinophilic Meningitis. <i>American Journal of Tropical Medicine and Hygiene</i> , 1969 , 18, 206-216	63.2	51
19	Sabin-Feldman Dye Test for Toxoplasmosis. <i>American Journal of Tropical Medicine and Hygiene</i> , 1969 , 18, 395-398	3.2	12
18	Studies on eosinophilic meningitis. IV. Experimental infection of fresh-water and marine fish with Angiostrongylus cantonensis. <i>American Journal of Epidemiology</i> , 1967 , 85, 395-402	3.8	18
17	Studies on eosinophilic meningitis. 3. Epidemiologic and clinical observations on Pacific islands and the possible etiologic role of Angiostrongylus cantonensis. <i>American Journal of Epidemiology</i> , 1967 , 85, 17-44	3.8	74
16	Studies on eosinophilic meningitis. 2. Experimental infection of shrimp and crabs with Angiostrongylus cantonensis. <i>American Journal of Epidemiology</i> , 1966 , 84, 120-31	3.8	19
15	STUDIES ON EOSINOPHILIC MENINGITIS. I. OBSERVATIONS ON THE GEOGRAPHIC DISTRIBUTION OF ANGIOSTRONGYLUS CANTONENSIS IN THE PACIFIC AREA AND ITS PREVALENCE IN WILD RATS. <i>American Journal of Epidemiology</i> , 1965 , 81, 52-62	3.8	16
14	Eosinophilic meningoencephalitis caused by a metastrongylid lung-worm of rats. <i>JAMA - Journal of the American Medical Association</i> , 1962 , 179, 620-4	27.4	93
13	Fatal staphylococcal septicaemia following removal of tonsils and adenoids. <i>The BMJ</i> , 1952 , 1, 1231		2
12	Conjugated Polymer Actuators: Fundamentals193-227		15
11	Actuated Pins for Braille Displays265-277		3
10	Time-Dependent (Mechanical∏ Nonbiological Catalysis. 2. Highly Efficient, B iomimetic□ Hydrogen-Generating Electrocatalysts297-317		
9	Time-Dependent (Mechanical) Nonbiological Catalysis. 3. A Readily Prepared, Convergent, Oxygen-Reduction Electrocatalyst319-335		
8	Conductive Electroactive Polymers		96

7	Conductive Electroactive Polymers	1	136
6	Smart Membranes7366-7374		
5	Conducting Polymers1962-1971		
4	3D-Printed Wearable Electrochemical Energy Devices. <i>Advanced Functional Materials</i> ,2103092 15.6	9)
3	Hollow-Fiber Melt Electrowriting Using a 3D-Printed Coaxial Nozzle. Advanced Engineering Materials,2109.75	0 1	Ĺ
2	3D Bioprinting Constructs to Facilitate Skin Regeneration. <i>Advanced Functional Materials</i> ,2105080 15.6	6	5
1	Current and future perspectives on biomaterials for segmental mandibular defect repair. International Journal of Polymeric Materials and Polymeric Biomaterials,1-13 3	C)