List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2576499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Apparent contact angle of oleic acid and triolein on a reverse osmosis membrane in SC-CO2 environment. Journal of Supercritical Fluids, 2022, 181, 105470.	1.6	0
2	Interfacial tension and equilibrium contact angle of lipids on polished glass in supercritical CO2. Journal of Supercritical Fluids, 2022, 181, 105486.	1.6	1
3	Micromorphological and elemental characteristics of chickpea, faba bean, field pea, and lentil cotyledon topographies. Cereal Chemistry, 2022, 99, 380-392.	1.1	7
4	Bio-composites from spent hen derived lipids grafted on CNC and reinforced with nanoclay. Carbohydrate Polymers, 2022, 281, 119082.	5.1	7
5	Drying of sodium alginate using Pressurized Gas eXpanded (PGX) liquid technology. Journal of CO2 Utilization, 2022, 61, 102006.	3.3	2
6	Potential of sequential pearling to explore macronutrient distribution across faba beans (Vicia faba) Tj ETQq0 0 0	rgBT /Ove	rlgck 10 Tf 5

7	In-Depth Study of Cyclodextrin Complexation with Carotenoids toward the Formation of Enhanced Delivery Systems. Molecular Pharmaceutics, 2021, 18, 1720-1729.	2.3	3
8	Extraction of oil rich in coenzyme Q10 from chicken by-products using supercritical CO2. Journal of Supercritical Fluids, 2021, 174, 105242.	1.6	3
9	Effects of high-pressure carbon dioxide on microbial quality and germination of cereal grains and beans. Journal of Supercritical Fluids, 2021, 175, 105272.	1.6	9
10	Interfacial tension and equilibrium contact angle of corn oil on polished stainless steel in supercritical CO2 and N2. Journal of Supercritical Fluids, 2020, 156, 104665.	1.6	8
11	Preparation of PGX-dried gum arabic and its loading with coQ10 by adsorptive precipitation. Journal of Supercritical Fluids, 2020, 156, 104662.	1.6	4
12	Lipid-derived hybrid bionanocomposites from spent hens. Materials Today Communications, 2020, 25, 101327.	0.9	7
13	Lethality of high-pressure carbon dioxide on Shiga toxin-producing Escherichia coli, Salmonella and surrogate organisms on beef jerky. International Journal of Food Microbiology, 2020, 321, 108550.	2.1	13
14	Optimization of coenzyme Q10 encapsulation in liposomes using supercritical carbon dioxide. Journal of CO2 Utilization, 2020, 38, 68-76.	3.3	7
14 15	Optimization of coenzyme Q10 encapsulation in liposomes using supercritical carbon dioxide. Journal of CO2 Utilization, 2020, 38, 68-76. Supercritical CO2 extraction and solvent-free rapid alternative bioepoxy production from spent hens. Journal of CO2 Utilization, 2019, 34, 335-342.	3.3 3.3	7 5
14 15 16	Optimization of coenzyme Q10 encapsulation in liposomes using supercritical carbon dioxide. Journal of CO2 Utilization, 2020, 38, 68-76.Supercritical CO2 extraction and solvent-free rapid alternative bioepoxy production from spent hens. Journal of CO2 Utilization, 2019, 34, 335-342.Extraction, optimization, and characterization of lipids from spent hens: An unexploited sustainable bioresource. Journal of Cleaner Production, 2019, 206, 622-630.	3.3 3.3 4.6	7 5 13
14 15 16 17	Optimization of coenzyme Q10 encapsulation in liposomes using supercritical carbon dioxide. Journal of CO2 Utilization, 2020, 38, 68-76. Supercritical CO2 extraction and solvent-free rapid alternative bioepoxy production from spent hens. Journal of CO2 Utilization, 2019, 34, 335-342. Extraction, optimization, and characterization of lipids from spent hens: An unexploited sustainable bioresource. Journal of Cleaner Production, 2019, 206, 622-630. Coenzyme Q10 solubility in supercritical CO2 using a dynamic system. Journal of CO2 Utilization, 2018, 24, 315-320.	3.3 3.3 4.6 3.3	7 5 13 14

#	Article	IF	CITATIONS
19	Adsorptive precipitation of co-enzyme Q10 on PGX-processed β-glucan powder. Journal of Supercritical Fluids, 2018, 141, 157-165.	1.6	7
20	Characterization of oat beta-glucan and coenzyme Q10-loaded beta-glucan powders generated by the pressurized gas-expanded liquid (PGX) technology. Food Research International, 2018, 106, 354-362.	2.9	9
21	Perspectives on the use of supercritical particle formation technologies for food ingredients. Journal of Supercritical Fluids, 2018, 134, 244-251.	1.6	43
22	Development of an orange-flavoured functional beverage formulated with beta-glucan and coenzyme Q10-impregnated beta-glucan. Journal of Functional Foods, 2018, 47, 397-404.	1.6	9
23	Physicochemical and functional properties of leftover egg yolk granules after phosvitin extraction. Food Chemistry, 2018, 268, 369-377.	4.2	13
24	Quality characteristics of angel food cake and muffin using lentil protein as egg/milk replacer. International Journal of Food Science and Technology, 2017, 52, 1604-1613.	1.3	57
25	Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods, 2017, 34, 159-167.	1.6	117
26	Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide. Applied and Environmental Microbiology, 2017, 83, .	1.4	27
27	Physicochemical and functional properties of livetins fraction from hen egg yolk. Food Bioscience, 2017, 18, 38-45.	2.0	48
28	Preparation of anthocyanin-loaded liposomes using an improved supercritical carbon dioxide method. Innovative Food Science and Emerging Technologies, 2017, 39, 119-128.	2.7	48
29	Recovery of bioactive compounds from cranberry pomace using ternary mixtures of CO 2 + ethanol + water. Journal of Supercritical Fluids, 2017, 130, 147-155.	1.6	27
30	Encapsulation of lutein in liposomes using supercritical carbon dioxide. Food Research International, 2017, 100, 168-179.	2.9	80
31	Encapsulation of Vitamin B2 in solid lipid nanoparticles using supercritical CO 2. Journal of Supercritical Fluids, 2017, 120, 432-442.	1.6	69
32	Î ² -Glucan content, viscosity, and solubility of Canadian grown oat as influenced by cultivar and growing location. Canadian Journal of Plant Science, 2016, 96, 183-196.	0.3	23
33	Understanding the stability mechanisms of lentil legumin-like protein and polysaccharide foams. Food Hydrocolloids, 2016, 61, 903-913.	5.6	60
34	Formation of solid lipid microparticles from fully hydrogenated canola oil using supercritical carbon dioxide. Journal of Food Engineering, 2016, 178, 137-144.	2.7	25
35	Separation of lipid mixtures using a coupled supercritical CO 2 –membrane technology system. Separation and Purification Technology, 2015, 156, 691-698.	3.9	9
36	Moisture impact on extractability of phospholipids from leftover egg yolk after enzymatic treatment using supercritical carbon dioxide. Food and Bioproducts Processing, 2015, 94, 473-481.	1.8	4

#	Article	IF	CITATIONS
37	Flax mucilage and barley beta-glucan aerogels obtained using supercritical carbon dioxide: Application as flax lignan carriers. Innovative Food Science and Emerging Technologies, 2015, 28, 40-46.	2.7	27
38	Preparation of liposomes using supercritical carbon dioxide technology: Effects of phospholipids and sterols. Food Research International, 2015, 77, 63-72.	2.9	68
39	Use and limitations of a quartz crystal microbalance to measure viscosity of carbon dioxide-expanded fish oil fatty acid ethyl esters. Journal of Supercritical Fluids, 2015, 101, 104-109.	1.6	0
40	Preparation of liposomes using a modified supercritical process via depressurization of liquid phase. Journal of Supercritical Fluids, 2015, 100, 110-120.	1.6	32
41	Impact of pH on molecular structure and surface properties of lentil legumin-like protein and its application as foam stabilizer. Colloids and Surfaces B: Biointerfaces, 2015, 132, 45-53.	2.5	117
42	Preparation of liposomes using supercritical carbon dioxide via depressurization of the supercritical phase. Journal of Food Engineering, 2015, 158, 104-112.	2.7	32
43	Developing an integrated supercritical fluid biorefinery for the processing of grains. Journal of Supercritical Fluids, 2015, 96, 77-85.	1.6	32
44	Phase separation behavior of egg yolk suspensions after anionic polysaccharides addition. Carbohydrate Polymers, 2015, 117, 297-303.	5.1	12
45	Destabilization of Egg Yolk Emulsion After IgY Removal Through Enzymatic Treatments. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1857-1866.	0.8	4
46	Physicochemical properties of leftover egg yolk after livetins removal. LWT - Food Science and Technology, 2014, 55, 170-175.	2.5	18
47	Continuous Bioconversion of the Lipids of Corn, Wheat, and Triticale Distiller's Dried Grains with Solubles to Biodiesel in Supercritical Carbon Dioxide and Characterization of the Products. Bioenergy Research, 2014, 7, 702-710.	2.2	10
48	Performance of two immobilized lipases for interesterification between canola oil and fully-hydrogenated canola oil under supercritical carbon dioxide. LWT - Food Science and Technology, 2014, 58, 263-271.	2.5	19
49	Viscosity and rheological behavior of carbon dioxide-expanded fish oil fatty acid ethyl esters: Measurement using a rotational viscometer and modeling. Journal of Supercritical Fluids, 2014, 95, 519-524.	1.6	6
50	Glycemic Effect of Oat and Barley Beta-glucan When Incorporated into a Snack Bar: A Dose Escalation Study. Journal of the American College of Nutrition, 2014, 33, 442-449.	1.1	11
51	Correction to A New Microcrystalline Phytosterol Polymorph Generated Using CO2-Expanded Solvents. Crystal Growth and Design, 2014, 14, 1500-1500.	1.4	0
52	A New Microcrystalline Phytosterol Polymorph Generated Using CO ₂ -Expanded Solvents. Crystal Growth and Design, 2014, 14, 58-68.	1.4	23
53	Effect of enzymatic hydrolysis on the extractability of phospholipids from leftover egg yolk using supercritical CO2. Separation and Purification Technology, 2014, 122, 192-198.	3.9	13
54	Obtaining a hydrolyzed milk fat fraction enriched in conjugated linoleic acid and trans-vaccenic acid. International Dairy Journal, 2014, 36, 29-37.	1.5	8

#	Article	IF	CITATIONS
55	Melting point depression of solid lipids in pressurized carbon dioxide. Journal of Supercritical Fluids, 2014, 92, 208-214.	1.6	26
56	Continuous biocatalytic conversion of the oil of corn distiller's dried grains with solubles to fatty acid methyl esters in supercritical carbon dioxide. Biomass and Bioenergy, 2013, 54, 140-146.	2.9	25
57	Characterization of Enzymatically Interesterified Canola Oil and Fullyâ€Hydrogenated Canola Oil Blends Under Supercritical CO ₂ . JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1645-1652.	0.8	3
58	Lipase-catalysed interesterification between canola oil and fully hydrogenated canola oil in contact with supercritical carbon dioxide. Food Chemistry, 2013, 141, 2220-2228.	4.2	20
59	Enzymatic conversion of corn oil into biodiesel in a batch supercritical carbon dioxide reactor and kinetic modeling. Journal of Supercritical Fluids, 2013, 75, 172-180.	1.6	68
60	Membrane Applications in Functional Foods and Nutraceuticals. Critical Reviews in Food Science and Nutrition, 2012, 52, 347-371.	5.4	44
61	Supercritical Carbon Dioxide Extraction of Corn Distiller's Dried Grains with Solubles: Experiments and Mathematical Modeling. Journal of Agricultural and Food Chemistry, 2012, 60, 12482-12490.	2.4	38
62	Barley beta-glucan aerogels via supercritical CO2 drying. Food Research International, 2012, 48, 442-448.	2.9	44
63	Density and volumetric expansion of carbon dioxide-expanded canola oil and its blend with fully-hydrogenated canola oil. Journal of Supercritical Fluids, 2012, 70, 57-65.	1.6	20
64	Effect of supercritical CO2 pressure on polymer membranes. Journal of Membrane Science, 2012, 399-400, 1-10.	4.1	16
65	Impregnation of flax oil in pregelatinized corn starch using supercritical CO2. Journal of Supercritical Fluids, 2012, 61, 221-228.	1.6	23
66	Enzymatic hydrolysis of conjugated linoleic acid-enriched anhydrous milk fat in supercritical carbon dioxide. Journal of Supercritical Fluids, 2012, 66, 198-206.	1.6	18
67	Performance characterization of polyamide reverse osmosis membranes upon supercritical CO2 processing. Journal of Supercritical Fluids, 2012, 66, 150-156.	1.6	5
68	Phase behavior of phytosterols and cholesterol in carbon dioxide-expanded ethanol. Journal of Supercritical Fluids, 2012, 63, 59-68.	1.6	12
69	Barley Î ² -glucan aerogels as a carrier for flax oil via supercritical CO2. Journal of Food Engineering, 2012, 111, 625-631.	2.7	56
70	Microencapsulation of flax oil with zein using spray and freeze drying. LWT - Food Science and Technology, 2011, 44, 1880-1887.	2.5	238
71	Effect of Storage Conditions on the Solubility and Viscosity of βâ€Glucan Extracted from Bread under <i>In Vitro</i> Conditions. Journal of Food Science, 2011, 76, C1-7.	1.5	10
72	Effect of supercritical CO2 flux, temperature and processing time on physicochemical and morphological properties of commercial reverse osmosis membranes. Journal of Supercritical Fluids, 2011, 60, 81-88.	1.6	12

#	Article	IF	CITATIONS
73	Viscosity and rheological behaviour of carbon dioxide-expanded fish oil triglycerides: Measurement and modeling. Journal of Supercritical Fluids, 2011, 59, 27-35.	1.6	16
74	Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM. Desalination, 2011, 278, 387-396.	4.0	152
75	Supercritical CO ₂ Extraction of Flax Lignans. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 707-715.	0.8	24
76	Viscosity measurement and modeling of canola oil and its blend with canola stearin in equilibrium with high pressure carbon dioxide. Journal of Supercritical Fluids, 2011, 58, 7-14.	1.6	20
77	Continuous production of fatty acid methyl esters from corn oil in a supercritical carbon dioxide bioreactor. Journal of Supercritical Fluids, 2011, 58, 79-87.	1.6	54
78	Viscosity and Solubility of β lucan Extracted Under In Vitro Conditions from Barley βâ€Glucanâ€Fortified Bread and Evaluation of Loaf Characteristics. Cereal Chemistry, 2011, 88, 421-428.	1.1	2
79	Apparent solubility of lycopene and β-carotene in supercritical CO2, CO2+ethanol and CO2+canola oil using dynamic extraction of tomatoes. Journal of Food Engineering, 2010, 99, 1-8.	2.7	62
80	β-Glucan extracts inhibit the in vitro intestinal uptake of long-chain fatty acids and cholesterol and down-regulate genes involved in lipogenesis and lipid transport in ratsâ~†. Journal of Nutritional Biochemistry, 2010, 21, 695-701.	1.9	68
81	Interfacial tension of marine lipids in contact with high pressure carbon dioxide. Journal of Supercritical Fluids, 2010, 52, 203-214.	1.6	17
82	Bioseparation of Nutraceuticals Using Supercritical Carbon Dioxide. Food Engineering Series, 2010, , 353-392.	0.3	1
83	Effect of Health Information on Consumer Acceptability of Bread Fortified with βâ€Glucan and Effect of Fortification on Bread Quality. Cereal Chemistry, 2010, 87, 428-433.	1.1	7
84	Effect of Formulation and Processing Treatments on Viscosity and Solubility of Extractable Barley βâ€Glucan in Bread Dough Evaluated Under In Vitro Conditions. Cereal Chemistry, 2010, 87, 65-72.	1.1	22
85	Functionality of Barley Proteins Extracted and Fractionated by Alkaline and Alcohol Methods. Cereal Chemistry, 2010, 87, 597-606.	1.1	97
86	Density of Carbon Dioxide Expanded Ethanol at (313.2, 328.2, and 343.2) K. Journal of Chemical & Engineering Data, 2010, 55, 2410-2415.	1.0	15
87	Design of a high-pressure circulating pump for viscous liquids. Review of Scientific Instruments, 2009, 80, 075104.	0.6	4
88	Perspectives on supercritical fluid processing of fats and oils. Journal of Supercritical Fluids, 2009, 47, 583-590.	1.6	218
89	Density of marine lipids in equilibrium with carbon dioxide. Journal of Supercritical Fluids, 2009, 50, 97-104.	1.6	22
90	Rheological properties of aqueous blends of high purity barley Î ² -glucan with high purity commercial food gums. Food Chemistry, 2009, 117, 417-425.	4.2	19

#	Article	IF	CITATIONS
91	Comparison of Canola Meals Obtained with Conventional Methods and Supercritical CO ₂ with and without Ethanol. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 667-675.	0.8	32
92	Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresource Technology, 2008, 99, 6354-6359.	4.8	249
93	Production of monoolein from oleic acid and glycerol in supercritical carbon dioxide media: A kinetic approach. Journal of Supercritical Fluids, 2008, 44, 40-47.	1.6	23
94	Kinetic modeling of hydrolysis of canola oil in supercritical media. Journal of Supercritical Fluids, 2008, 45, 94-101.	1.6	43
95	Grain fractionation technologies for cereal beta-glucan concentration. Food Research International, 2008, 41, 876-881.	2.9	78
96	Viscosity of model yogurt systems enriched with barley β-glucan as influenced by starter cultures. International Dairy Journal, 2007, 17, 1083-1088.	1.5	39
97	β-Glucan from Two Sources of Oat Concentrates Affect Postprandial Glycemia in Relation to the Level of Viscosity. Journal of the American College of Nutrition, 2007, 26, 639-644.	1.1	98
98	Determination of vapor pressure and solubility correlation of phenolic compounds in supercritical CO2. Journal of Supercritical Fluids, 2007, 40, 7-19.	1.6	33
99	31P-nuclear magnetic resonance spectroscopic analysis of phosphorus in oat and barley β-glucans. Food Hydrocolloids, 2007, 21, 1056-1061.	5.6	19
100	Column Fractionation of Canola Oil Deodorizer Distillate Using Supercritical Carbon Dioxide. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 953-961.	0.8	23
101	Supercritical Fluid Extraction of Specialty Oils. , 2007, , 51-101.		7
102	Supplementation of the Diet with High-Viscosity Beta-Glucan Results in Enrichment for Lactobacilli in the Rat Cecum. Applied and Environmental Microbiology, 2006, 72, 1925-1931.	1.4	129
103	Supercritical carbon dioxide extraction of carotenoids from carrot using canola oil as a continuous co-solvent. Journal of Supercritical Fluids, 2006, 37, 397-408.	1.6	192
104	Kinetic modeling of glycerolysis–hydrolysis of canola oil in supercritical carbon dioxide media using equilibrium data. Journal of Supercritical Fluids, 2006, 37, 417-424.	1.6	38
105	Solubility behavior of ternary systems of lipids in supercritical carbon dioxide. Journal of Supercritical Fluids, 2006, 38, 275-288.	1.6	31
106	Comparison of the solubility of \hat{l}^2 -carotene in supercritical CO2 based on a binary and a multicomponent complex system. Journal of Supercritical Fluids, 2006, 37, 342-349.	1.6	61
107	Network Formation by Pilot Plant and Laboratory-Extracted Barley β-Glucan and Its Rheological Properties in Aqueous Solutions. Cereal Chemistry, 2006, 83, 584-589.	1.1	14
108	βâ€glucan from oat and barley concentrates affect postprandial glycemia and insulinemia in relation to the level of viscosity. FASEB Journal, 2006, 20, A430.	0.2	5

#	Article	IF	CITATIONS
109	Solubility behavior of ternary systems of lipids, cosolvents and supercritical carbon dioxide and processing aspects. Journal of Supercritical Fluids, 2005, 36, 1-15.	1.6	126
110	Rheological properties of barley β-glucan. Carbohydrate Polymers, 2005, 59, 459-465.	5.1	60
111	Kinetic modeling of the glycerolysis reaction for soybean oils in supercritical carbon dioxide media. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 613-617.	0.8	22
112	Correlating the solubility behavior of minor lipid components in supercritical carbon dioxide. Journal of Supercritical Fluids, 2004, 31, 235-253.	1.6	96
113	Development of an Orange-Flavored Barley β-Glucan Beverage. Cereal Chemistry, 2004, 81, 499-503.	1.1	32
114	The suitability of barley and corn starches in their native and chemically modified forms for volatile meat flavor encapsulation. Food Research International, 2003, 36, 349-355.	2.9	55
115	Effect of Water on Canola Oil Hydrolysis in an Online Extractionâ^'Reaction System Using Supercritical CO2. Industrial & Engineering Chemistry Research, 2002, 41, 6475-6481.	1.8	28
116	On-line Extractionâ^'Reaction of Canola Oil with Ethanol by Immobilized Lipase in SC-CO2. Industrial & Engineering Chemistry Research, 2002, 41, 5770-5774.	1.8	24
117	Supercritical Fluid Extraction of Alkylamides fromEchinacea angustifolia. Journal of Agricultural and Food Chemistry, 2002, 50, 3947-3953.	2.4	38
118	Volatile flavour composition of cooked by-product blends of chicken, beef and pork: a quantitative GC–MS investigation. Food Research International, 2001, 34, 149-158.	2.9	70
119	Analysis of Phenolic Acids in Barley by High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 2001, 49, 4352-4358.	2.4	163
120	Lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 903-909.	0.8	49
121	Stabilization of emulsions and foams using barley \hat{I}^2 -glucan. Food Research International, 2000, 33, 27-33.	2.9	82
122	Correlating the Solubility Behavior of Fatty Acids, Mono-, Di-, and Triglycerides, and Fatty Acid Esters in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2000, 39, 4756-4766.	1.8	133
123	Volatiles from Roasted Byproducts of the Poultry-Processing Industry. Journal of Agricultural and Food Chemistry, 2000, 48, 3485-3492.	2.4	25
124	Modeling of oil extraction with supercritical CO2 from Atlantic mackerel (Scomber scombrus) at different moisture contents. Journal of Supercritical Fluids, 1998, 13, 303-309.	1.6	40
125	Effect of Extraction Conditions on Yield, Composition, and Viscosity Stability of Barley β-Glucan Gum. Cereal Chemistry, 1998, 75, 805-809.	1.1	61
126	Supercritical CO2 Extraction of Oil and Residual Proteins from Atlantic Mackerel (Scomber) Tj ETQq0 0 0 rgBT /O	verlock 10) T£ 50 62 Td

#	Article	IF	CITATIONS
127	Extraction Conditions and Moisture Content of Canola Flakes as Related to Lipid Composition of Supercritical CO2 Extracts. Journal of Food Science, 1997, 62, 155-159.	1.5	65
128	Extraction and Functional Properties of Barley β-Glucan as Affected by Temperature and pH. Journal of Food Science, 1997, 62, 1194-1201.	1.5	111
129	Thermal gradient fractionation of glyceride mixtures under supercritical fluid conditions. Journal of Supercritical Fluids, 1997, 10, 127-137.	1.6	51
130	Effect of Supercritical CO2on Myrosinase Activity and Glucosinolate Degradation in Canola. Journal of Agricultural and Food Chemistry, 1996, 44, 2372-2376.	2.4	41
131	Conversion of oils to monoglycerides by glycerolysis in supercritical carbon dioxide media. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 699-706.	0.8	36
132	Modification of Crude Canola Lecithin for Food Use. Journal of Food Science, 1995, 60, 160-163.	1.5	5
133	Supercritical CO2Extraction of Oil from Atlantic Mackerel (Scomber scombrus) and Protein Functionality. Journal of Food Science, 1995, 60, 703-706.	1.5	35
134	Extraction of phospholipids from canola with supercritical carbon dioxide and ethanol. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 1009-1015.	0.8	55
135	Extraction of Triglycerides and Phospholipids from Canola with Supercritical Carbon Dioxide and Ethanol. Journal of Food Science, 1992, 57, 440-443.	1.5	90
136	Thermodynamic analysis of supercritical carbon dioxide extraction of terpenes from cold-pressed orange oil. Industrial & amp; Engineering Chemistry Research, 1990, 29, 618-624.	1.8	40