
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2576305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation, 2020, 90, 189-203.	3.4	260
2	Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 2018, 58, 1009-1022.	3.3	224
3	Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs. Scientific Reports, 2019, 9, 2097.	3.3	203
4	Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy, 2020, 10, 938.	3.0	179
5	UPLCâ€HRMSâ€based untargeted metabolic profiling reveals changes in chickpea (<scp><i>Cicer) Tj ETQq1 1 0 2019, 42, 115-132.</i></scp>).784314 r 5.7	rgBT /Overloc 176
6	Uptake, Translocation, and Consequences of Nanomaterials on Plant Growth and Stress Adaptation. Journal of Nanomaterials, 2021, 2021, 1-17.	2.7	137
7	Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (<i>Cicer arietinum</i>) and their role in drought tolerance. Journal of Plant Interactions, 2018, 13, 239-247.	2.1	130
8	Impact of Salicylic Acid and PGPR on the Drought Tolerance and Phytoremediation Potential of Helianthus annus. Frontiers in Microbiology, 2018, 9, 2507.	3.5	127
9	Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE, 2019, 14, e0222302.	2.5	121
10	Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicology and Environmental Safety, 2019, 180, 588-599.	6.0	119
11	Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. International Journal of Phytoremediation, 2016, 18, 211-221.	3.1	117
12	Insights into the Interactions among Roots, Rhizosphere, and Rhizobacteria for Improving Plant Growth and Tolerance to Abiotic Stresses: A Review. Cells, 2021, 10, 1551.	4.1	112
13	Isolation and Characterization of Plant Growth Promoting Endophytic Bacteria from Desert Plants and Their Application as Bioinoculants for Sustainable Agriculture. Agronomy, 2020, 10, 1325.	3.0	105
14	Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. International Journal of Phytoremediation, 2016, 18, 1258-1269.	3.1	98
15	In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis, 2019, 77, 225-235.	2.3	92
16	Chlorophyll Fluorescence Parameters and Antioxidant Defense System Can Display Salt Tolerance of Salt Acclimated Sweet Pepper Plants Treated with Chitosan and Plant Growth Promoting Rhizobacteria. Agronomy, 2020, 10, 1180.	3.0	92
17	Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	92
18	Trends of electronic waste pollution and its impact on the global environment and ecosystem. Environmental Science and Pollution Research, 2019, 26, 16923-16938.	5.3	90

#	Article	IF	CITATIONS
19	Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany, 2020, 52, .	0.5	86
20	Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L PLoS ONE, 2019, 14, e0213040.	2.5	82
21	Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan. Atmospheric Research, 2018, 205, 118-133.	4.1	81
22	Production of Plant Beneficial and Antioxidants Metabolites by Klebsiellavariicola under Salinity Stress. Molecules, 2021, 26, 1894.	3.8	74
23	Comparative metabolomic profiling in the roots and leaves in contrasting genotypes reveals complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS ONE, 2019, 14, e0213502.	2.5	72
24	Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environmental Research, 2021, 197, 111031.	7.5	71
25	The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis, 2017, 72, 195-205.	2.3	69
26	Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS ONE, 2020, 15, e0231426.	2.5	68
27	Water Conservation and Plant Survival Strategies of Rhizobacteria under Drought Stress. Agronomy, 2020, 10, 1683.	3.0	56
28	Role of Beneficial Microorganisms and Salicylic Acid in Improving Rainfed Agriculture and Future Food Safety. Microorganisms, 2020, 8, 1018.	3.6	52
29	Paddy Land Pollutants and Their Role in Climate Change. Soil Biology, 2018, , 113-124.	0.8	47
30	PGPR Modulation of Secondary Metabolites in Tomato Infested with Spodoptera litura. Agronomy, 2020, 10, 778.	3.0	46
31	Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil. International Journal of Phytoremediation, 2018, 20, 405-414.	3.1	45
32	The stimulatory effects of plant growth promoting rhizobacteria and plant growth regulators on wheat physiology grown in sandy soil. Archives of Microbiology, 2019, 201, 769-785.	2.2	45
33	Advances in detection of stress tolerance in plants through metabolomics approaches. Plant OMICS, 2017, 10, 153-163.	0.4	41
34	Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress. Chemosphere, 2022, 292, 133201.	8.2	40
35	Thermal stress alleviating potential of endophytic fungus Rhizopus oryzae inoculated to sunflower (Helianthus annuus L.) and soybean (Glycine max L.). Pakistan Journal of Botany, 2020, 52, .	0.5	39
36	Interaction between PGPR and PGR for water conservation and plant growth attributes under drought condition. Biologia (Poland), 2018, 73, 1083-1098.	1.5	34

#	Article	IF	CITATIONS
37	Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Industrial Crops and Products, 2021, 167, 113541.	5.2	33
38	Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiological Research, 2021, 249, 126771.	5.3	31
39	Isolation and Characterization of Phosphate Solubilizing Microbes from Rock Phosphate Mines and Their Potential Effect for Sustainable Agriculture. Sustainability, 2021, 13, 2151.	3.2	28
40	IAA Producing Endopytic Fungus Fusariun oxysporum wlw Colonize Maize Roots and Promoted Maize Growth Under Hydroponic Condition. European Journal of Experimental Biology, 2018, 08, .	0.3	27
41	Multi-Trait Genomic Prediction of Yield-Related Traits in US Soft Wheat under Variable Water Regimes. Genes, 2020, 11, 1270.	2.4	26
42	In vitro effects of GA3 on morphogenesis of CIP potato explants and acclimatization of plantlets in field. In Vitro Cellular and Developmental Biology - Plant, 2018, 54, 104-111.	2.1	24
43	Rootstocks influence the salt tolerance of Kinnow mandarin trees by altering the antioxidant defense system, osmolyte concentration, and toxic ion accumulation. Scientia Horticulturae, 2019, 250, 1-11.	3.6	24
44	Molecular and Hormonal Regulation of Leaf Morphogenesis in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 5132.	4.1	24
45	Salicylic Acid Improves Boron Toxicity Tolerance by Modulating the Physio-Biochemical Characteristics of Maize (Zea mays L.) at an Early Growth Stage. Agronomy, 2020, 10, 2013.	3.0	24
46	Chitosan alleviates phytotoxicity caused by boron through augmented polyamine metabolism and antioxidant activities and reduced boron concentration in Cucumis sativus L Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	23
47	IAA and flavonoids modulates the association between maize roots and phytostimulant endophytic <i>Aspergillus fumigatus</i> greenish. Journal of Plant Interactions, 2018, 13, 532-542.	2.1	23
48	Potentials, Utilization, and Bioengineering of Plant Growth-Promoting Methylobacterium for Sustainable Agriculture. Sustainability, 2021, 13, 3941.	3.2	23
49	Insights into the Bacterial and Nitric Oxide-Induced Salt Tolerance in Sugarcane and Their Growth-Promoting Abilities. Microorganisms, 2021, 9, 2203.	3.6	23
50	Mining the Genome of Bacillus velezensis VB7 (CP047587) for MAMP Genes and Non-Ribosomal Peptide Synthetase Gene Clusters Conferring Antiviral and Antifungal Activity. Microorganisms, 2021, 9, 2511.	3.6	22
51	Silicon Alleviate Hypoxia Stress by Improving Enzymatic and Non-enzymatic Antioxidants and Regulating Nutrient Uptake in Muscadine Grape (Muscadinia rotundifolia Michx.). Frontiers in Plant Science, 2020, 11, 618873.	3.6	21
52	Ploidy level of citrus rootstocks affects the carbon and nitrogen metabolism in the leaves of Chromium-stressed Kinnow mandarin plants. Environmental and Experimental Botany, 2018, 149, 70-80.	4.2	20
53	Combined Citric Acid and Glutathione Augments Lead (Pb) Stress Tolerance and Phytoremediation of Castorbean through Antioxidant Machinery and Pb Uptake. Sustainability, 2021, 13, 4073.	3.2	20
54	Endophytic Fungal Diversity and their Interaction with Plants for Agriculture Sustainability Under Stressful Condition. Recent Patents on Food, Nutrition & Agriculture, 2020, 11, 115-123.	0.9	18

#	Article	IF	CITATIONS
55	A comparative study of plant growth promoting rhizobacteria (PGPR) and sowing methods on nutrient availability in wheat and rhizosphere soil under salinity stress. Rhizosphere, 2022, 23, 100571.	3.0	18
56	Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils. Agronomy, 2021, 11, 2514.	3.0	17
57	The characterization of wheat genotypes for salinity tolerance using morpho-physiological indices under hydroponic conditions. Saudi Journal of Biological Sciences, 2022, 29, 103299.	3.8	17
58	Microbial and Plant Assisted Synthesis of Cobalt Oxide Nanoparticles and Their Antimicrobial Activities. Agronomy, 2021, 11, 1607.	3.0	16
59	Rock Phosphate-Enriched Compost in Combination with Rhizobacteria; A Cost-Effective Source for Better Soil Health and Wheat (Triticum aestivum) Productivity. Agronomy, 2020, 10, 1390.	3.0	15
60	Rhizobacteria and Abiotic Stress Management. Microorganisms for Sustainability, 2019, , 65-80.	0.7	15
61	Epigenetic marks for mitigating abiotic stresses in plants. Journal of Plant Physiology, 2022, 275, 153740.	3.5	15
62	Yucasin and cinnamic acid inhibit IAA and flavonoids biosynthesis minimizing interaction between maize and endophyte Aspergillus nomius. Symbiosis, 2020, 81, 149-160.	2.3	14
63	Production of Organic Fertilizers from Rocket Seed (Eruca Sativa L.), Chicken Peat and Moringa Oleifera Leaves for Growing Linseed under Water Deficit Stress. Sustainability, 2021, 13, 59.	3.2	14
64	Insect Pest Management Under Climate Change. , 2022, , 225-237.		14
65	Heavy Metal–Resistant Plant Growth–Promoting Citrobacter werkmanii Strain WWN1 and Enterobacter cloacae Strain JWM6 Enhance Wheat (Triticum aestivum L.) Growth by Modulating Physiological Attributes and Some Key Antioxidants Under Multi-Metal Stress. Frontiers in Microbiology, 2022, 13, .	3.5	14
66	Interactive Effects of Gibberellic Acid and Nitrogen Fertilization on the Growth, Yield, and Quality of Sugar Beet. Agronomy, 2021, 11, 137.	3.0	13
67	Assessment of Genetic Parameters and Gene Action Associated with Heterosis for Enhancing Yield Characters in Novel Hybrid Rice Parental Lines. Plants, 2022, 11, 266.	3.5	13
68	A new technique for reducing accumulation, transport, and toxicity of heavy metals in wheat (Triticum aestivum L.) by bio-filtration of river wastewater. Chemosphere, 2022, 294, 133642.	8.2	13
69	Prevalence of Wheat Associated Bacillus spp. and Their Bio-Control Efficacy Against Fusarium Root Rot. Frontiers in Microbiology, 2021, 12, 798619.	3.5	13
70	Polyamines provide new insights into the biochemical basis of Cr-tolerance in Kinnow mandarin grafted on diploid and double-diploid rootstocks. Environmental and Experimental Botany, 2018, 156, 248-260.	4.2	12
71	Silicon Nanoparticles Mitigate Hypoxia-Induced Oxidative Damage by Improving Antioxidants Activities and Concentration of Osmolytes in Southern Highbush Blueberry Plants. Agronomy, 2021, 11, 2143.	3.0	12
72	Desert Soil Microbes as a Mineral Nutrient Acquisition Tool for Chickpea (Cicer arietinum L.) Productivity at Different Moisture Regimes. Plants, 2020, 9, 1629.	3.5	10

#	Article	IF	CITATIONS
73	Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat. BMC Genomics, 2022, 23, 298.	2.8	10
74	Role of PGPR in the Phytoremediation of Heavy Metals and Crop Growth Under Municipal Wastewater Irrigation. , 2018, , 135-149.		8
75	Quantitative Estimation of the Hydroquinone, Mercury and Total Plate Count in Skin-Lightening Creams. Sustainability, 2021, 13, 8786.	3.2	7
76	Application of Plant Growth Promoting Microorganism and Plant Growth Regulators in Agricultural Production and Research. Agronomy, 2021, 11, 524.	3.0	6
77	A strategy for mitigating avian colibacillosis disease using plant growth promoting rhizobacteria and green synthesized zinc oxide nanoparticles. Saudi Journal of Biological Sciences, 2021, 28, 4957-4968.	3.8	6
78	Combined Application of Citric Acid and Cr Resistant Microbes Improved Castor Bean Growth and Photosynthesis while It Alleviated Cr Toxicity by Reducing Cr+6 to Cr3+. Microorganisms, 2021, 9, 2499.	3.6	6
79	Efficacy of Metribuzin Doses on Physiological, Growth, and Yield Characteristics of Wheat and Its Associated Weeds. Frontiers in Plant Science, 2022, 13, 866793.	3.6	6
80	Molecular Communication between Plants and Plant-Growth-Promoting Microorganisms for Stress Tolerance. Microorganisms, 2022, 10, 1088.	3.6	6
81	Isolation of Endophytic Fungi from Halophytic Plants and their Identification and Screening for Auxin Production and Other Plant Growth Promoting Traits. Journal of Plant Growth Regulation, 2023, 42, 4707-4723.	5.1	5
82	Biological Synthesis of Nanoparticles and Their Applications in Sustainable Agriculture Production. Natural Science, 2022, 14, 226-234.	0.4	5
83	Suppressing parthenium weed with beneficial plants in Australian grasslands. International Journal of Pest Management, 2021, 67, 114-120.	1.8	4
84	Growth and Yield of Field Crops Grown Under Drought Stress Condition Is Influenced by the Application of PGPR. Sustainable Development and Biodiversity, 2019, , 337-349.	1.7	4
85	Plant-microbial Interactions and their Role in Sustainable Agriculture and Sustainability of Agriculture Soils. Recent Patents on Food, Nutrition & Samp; Agriculture, 2020, 11, 94-95.	0.9	4
86	Loss of chromatin remodeler DDM1 causes segregation distortion in Arabidopsis thaliana. Planta, 2021, 254, 107.	3.2	4
87	Comparative Analysis of Microbial Consortiums and Nanoparticles for Rehabilitating Petroleum Waste Contaminated Soils. Molecules, 2022, 27, 1945.	3.8	4
88	Natural Ecological Remediation and Reuse of Sewage Water in Agriculture and Its Effects on Plant Health. , 0, , .		3
89	Antimicrobial and Antioxidant Activities of Methanolic Extract and Fractions of <i>Epilobium roseum</i> (Schreb.) against Bacterial Strains. American Journal of Plant Sciences, 2021, 12, 275-284.	0.8	3
90	Morphological, Physiological, and Biochemical Modulations in Crops under Salt Stress. , 2022, , 195-210.		3

#	Article	IF	CITATIONS
91	Developing Novel Rice Genotypes Harboring Specific QTL Alleles Associated with High Grain Yield under Water Shortage Stress. Plants, 2021, 10, 2219.	3.5	3
92	In vitro conservation of exotic potato genotypes through different Incubated temperatures, aerophilic and micro-aerophilic conditions. International Journal of Biodiversity and Conservation, 2016, 8, 147-152.	0.8	1
93	Plant growth-promoting rhizobacteria and their role as bio-inoculants for sustainable agriculture under stressful environments. , 2021, , 313-321.		1
94	Water Management in Era of Climate Change. , 2022, , 167-178.		1
95	Genetic Variation among Seedling of Pumpkins Genotypes through SDS-Page. American Journal of Plant Sciences, 2021, 12, 711-719.	0.8	0
96	Physiological Evaluation of Wheat (<i>Triticum aestivum</i> L.) Genotypes at Pre-Anthesis Stage under Heat Stress Conditions. American Journal of Plant Sciences, 2021, 12, 1780-1790.	0.8	0
97	16S metagenomics dataset of Zea mays and Triticum aestivum rhizosphere from Kallar Syedan Punjab, Pakistan. Data in Brief, 2022, 42, 108057.	1.0	Ο